![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isoeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
Ref | Expression |
---|---|
isoeq1 | ⊢ (𝐻 = 𝐺 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq1 6165 | . . 3 ⊢ (𝐻 = 𝐺 → (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) | |
2 | fveq1 6228 | . . . . . 6 ⊢ (𝐻 = 𝐺 → (𝐻‘𝑥) = (𝐺‘𝑥)) | |
3 | fveq1 6228 | . . . . . 6 ⊢ (𝐻 = 𝐺 → (𝐻‘𝑦) = (𝐺‘𝑦)) | |
4 | 2, 3 | breq12d 4698 | . . . . 5 ⊢ (𝐻 = 𝐺 → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦))) |
5 | 4 | bibi2d 331 | . . . 4 ⊢ (𝐻 = 𝐺 → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦)))) |
6 | 5 | 2ralbidv 3018 | . . 3 ⊢ (𝐻 = 𝐺 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦)))) |
7 | 1, 6 | anbi12d 747 | . 2 ⊢ (𝐻 = 𝐺 → ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐺:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦))))) |
8 | df-isom 5935 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
9 | df-isom 5935 | . 2 ⊢ (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐺:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦)))) | |
10 | 7, 8, 9 | 3bitr4g 303 | 1 ⊢ (𝐻 = 𝐺 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∀wral 2941 class class class wbr 4685 –1-1-onto→wf1o 5925 ‘cfv 5926 Isom wiso 5927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 |
This theorem is referenced by: isores1 6624 wemoiso 7195 wemoiso2 7196 ordiso 8462 oieu 8485 finnisoeu 8974 iunfictbso 8975 infrenegsup 11044 ltweuz 12800 fz1isolem 13283 isercolllem2 14440 isercoll 14442 dvgt0lem2 23811 efcvx 24248 relogiso 24389 logccv 24454 erdszelem1 31299 erdsze 31310 erdsze2lem2 31312 fzisoeu 39828 fourierdlem36 40678 fourierdlem96 40737 fourierdlem97 40738 fourierdlem98 40739 fourierdlem99 40740 fourierdlem105 40746 fourierdlem106 40747 fourierdlem108 40749 fourierdlem110 40751 fourierdlem112 40753 fourierdlem113 40754 fourierdlem115 40756 |
Copyright terms: Public domain | W3C validator |