Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isodd Structured version   Visualization version   GIF version

Theorem isodd 42067
Description: The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd integer increased by 1 and then divided by 2 is still an integer. (Contributed by AV, 14-Jun-2020.)
Assertion
Ref Expression
isodd (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ))

Proof of Theorem isodd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 oveq1 6803 . . . 4 (𝑧 = 𝑍 → (𝑧 + 1) = (𝑍 + 1))
21oveq1d 6811 . . 3 (𝑧 = 𝑍 → ((𝑧 + 1) / 2) = ((𝑍 + 1) / 2))
32eleq1d 2835 . 2 (𝑧 = 𝑍 → (((𝑧 + 1) / 2) ∈ ℤ ↔ ((𝑍 + 1) / 2) ∈ ℤ))
4 df-odd 42065 . 2 Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ}
53, 4elrab2 3518 1 (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382   = wceq 1631  wcel 2145  (class class class)co 6796  1c1 10143   + caddc 10145   / cdiv 10890  2c2 11276  cz 11584   Odd codd 42063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-iota 5993  df-fv 6038  df-ov 6799  df-odd 42065
This theorem is referenced by:  oddz  42069  oddp1div2z  42071  isodd2  42073  evenm1odd  42077  evennodd  42081  oddneven  42082  onego  42084  zeoALTV  42106  oddp1evenALTV  42112  1oddALTV  42126
  Copyright terms: Public domain W3C validator