Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoco Structured version   Visualization version   GIF version

Theorem isoco 16644
 Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
isoco.b 𝐵 = (Base‘𝐶)
isoco.o · = (comp‘𝐶)
isoco.n 𝐼 = (Iso‘𝐶)
isoco.c (𝜑𝐶 ∈ Cat)
isoco.x (𝜑𝑋𝐵)
isoco.y (𝜑𝑌𝐵)
isoco.z (𝜑𝑍𝐵)
isoco.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
isoco.g (𝜑𝐺 ∈ (𝑌𝐼𝑍))
Assertion
Ref Expression
isoco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐼𝑍))

Proof of Theorem isoco
StepHypRef Expression
1 isoco.b . 2 𝐵 = (Base‘𝐶)
2 eqid 2771 . 2 (Inv‘𝐶) = (Inv‘𝐶)
3 isoco.c . 2 (𝜑𝐶 ∈ Cat)
4 isoco.x . 2 (𝜑𝑋𝐵)
5 isoco.z . 2 (𝜑𝑍𝐵)
6 isoco.n . 2 𝐼 = (Iso‘𝐶)
7 isoco.y . . 3 (𝜑𝑌𝐵)
8 isoco.f . . 3 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
9 isoco.o . . 3 · = (comp‘𝐶)
10 isoco.g . . 3 (𝜑𝐺 ∈ (𝑌𝐼𝑍))
111, 2, 3, 4, 7, 6, 8, 9, 5, 10invco 16638 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋(Inv‘𝐶)𝑍)(((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌(Inv‘𝐶)𝑍)‘𝐺)))
121, 2, 3, 4, 5, 6, 11inviso1 16633 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐼𝑍))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1631   ∈ wcel 2145  ⟨cop 4322  ‘cfv 6031  (class class class)co 6793  Basecbs 16064  compcco 16161  Catccat 16532  Invcinv 16612  Isociso 16613 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-cat 16536  df-cid 16537  df-sect 16614  df-inv 16615  df-iso 16616 This theorem is referenced by:  cictr  16672
 Copyright terms: Public domain W3C validator