MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isocnv2 Structured version   Visualization version   GIF version

Theorem isocnv2 6744
Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
isocnv2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵))

Proof of Theorem isocnv2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralcom 3236 . . . 4 (∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)))
2 vex 3343 . . . . . . 7 𝑥 ∈ V
3 vex 3343 . . . . . . 7 𝑦 ∈ V
42, 3brcnv 5460 . . . . . 6 (𝑥𝑅𝑦𝑦𝑅𝑥)
5 fvex 6362 . . . . . . 7 (𝐻𝑥) ∈ V
6 fvex 6362 . . . . . . 7 (𝐻𝑦) ∈ V
75, 6brcnv 5460 . . . . . 6 ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑦)𝑆(𝐻𝑥))
84, 7bibi12i 328 . . . . 5 ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)))
982ralbii 3119 . . . 4 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)))
101, 9bitr4i 267 . . 3 (∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
1110anbi2i 732 . 2 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
12 df-isom 6058 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
13 df-isom 6058 . 2 (𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
1411, 12, 133bitr4i 292 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  wral 3050   class class class wbr 4804  ccnv 5265  1-1-ontowf1o 6048  cfv 6049   Isom wiso 6050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-cnv 5274  df-iota 6012  df-fv 6057  df-isom 6058
This theorem is referenced by:  infiso  8578  wofib  8615  leiso  13435  gtiso  29787
  Copyright terms: Public domain W3C validator