MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isocnv Structured version   Visualization version   GIF version

Theorem isocnv 6620
Description: Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isocnv (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))

Proof of Theorem isocnv
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ocnv 6187 . . . 4 (𝐻:𝐴1-1-onto𝐵𝐻:𝐵1-1-onto𝐴)
21adantr 480 . . 3 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → 𝐻:𝐵1-1-onto𝐴)
3 f1ocnvfv2 6573 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵𝑧𝐵) → (𝐻‘(𝐻𝑧)) = 𝑧)
43adantrr 753 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐵𝑤𝐵)) → (𝐻‘(𝐻𝑧)) = 𝑧)
5 f1ocnvfv2 6573 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵𝑤𝐵) → (𝐻‘(𝐻𝑤)) = 𝑤)
65adantrl 752 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐵𝑤𝐵)) → (𝐻‘(𝐻𝑤)) = 𝑤)
74, 6breq12d 4698 . . . . . 6 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ 𝑧𝑆𝑤))
87adantlr 751 . . . . 5 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ 𝑧𝑆𝑤))
9 f1of 6175 . . . . . . 7 (𝐻:𝐵1-1-onto𝐴𝐻:𝐵𝐴)
101, 9syl 17 . . . . . 6 (𝐻:𝐴1-1-onto𝐵𝐻:𝐵𝐴)
11 ffvelrn 6397 . . . . . . . . 9 ((𝐻:𝐵𝐴𝑧𝐵) → (𝐻𝑧) ∈ 𝐴)
12 ffvelrn 6397 . . . . . . . . 9 ((𝐻:𝐵𝐴𝑤𝐵) → (𝐻𝑤) ∈ 𝐴)
1311, 12anim12dan 900 . . . . . . . 8 ((𝐻:𝐵𝐴 ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻𝑧) ∈ 𝐴 ∧ (𝐻𝑤) ∈ 𝐴))
14 breq1 4688 . . . . . . . . . . 11 (𝑥 = (𝐻𝑧) → (𝑥𝑅𝑦 ↔ (𝐻𝑧)𝑅𝑦))
15 fveq2 6229 . . . . . . . . . . . 12 (𝑥 = (𝐻𝑧) → (𝐻𝑥) = (𝐻‘(𝐻𝑧)))
1615breq1d 4695 . . . . . . . . . . 11 (𝑥 = (𝐻𝑧) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻𝑦)))
1714, 16bibi12d 334 . . . . . . . . . 10 (𝑥 = (𝐻𝑧) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ((𝐻𝑧)𝑅𝑦 ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻𝑦))))
18 bicom 212 . . . . . . . . . 10 (((𝐻𝑧)𝑅𝑦 ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻𝑦)) ↔ ((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻𝑧)𝑅𝑦))
1917, 18syl6bb 276 . . . . . . . . 9 (𝑥 = (𝐻𝑧) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻𝑧)𝑅𝑦)))
20 fveq2 6229 . . . . . . . . . . 11 (𝑦 = (𝐻𝑤) → (𝐻𝑦) = (𝐻‘(𝐻𝑤)))
2120breq2d 4697 . . . . . . . . . 10 (𝑦 = (𝐻𝑤) → ((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤))))
22 breq2 4689 . . . . . . . . . 10 (𝑦 = (𝐻𝑤) → ((𝐻𝑧)𝑅𝑦 ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2321, 22bibi12d 334 . . . . . . . . 9 (𝑦 = (𝐻𝑤) → (((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻𝑧)𝑅𝑦) ↔ ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤))))
2419, 23rspc2va 3354 . . . . . . . 8 ((((𝐻𝑧) ∈ 𝐴 ∧ (𝐻𝑤) ∈ 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2513, 24sylan 487 . . . . . . 7 (((𝐻:𝐵𝐴 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2625an32s 863 . . . . . 6 (((𝐻:𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2710, 26sylanl1 683 . . . . 5 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
288, 27bitr3d 270 . . . 4 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2928ralrimivva 3000 . . 3 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
302, 29jca 553 . 2 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → (𝐻:𝐵1-1-onto𝐴 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤))))
31 df-isom 5935 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
32 df-isom 5935 . 2 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) ↔ (𝐻:𝐵1-1-onto𝐴 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤))))
3330, 31, 323imtr4i 281 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941   class class class wbr 4685  ccnv 5142  wf 5922  1-1-ontowf1o 5925  cfv 5926   Isom wiso 5927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935
This theorem is referenced by:  isores1  6624  isofr  6632  isose  6633  isopo  6636  isoso  6638  weisoeq  6645  weisoeq2  6646  fnwelem  7337  oieu  8485  oemapwe  8629  cantnffval2  8630  wemapwe  8632  infxpenlem  8874  fpwwe2lem7  9496  fpwwe2lem9  9498  infrenegsup  11044  ltweuz  12800  fz1isolem  13283  ordthmeo  21653  relogiso  24389  erdsze2lem2  31312  fzisoeu  39828
  Copyright terms: Public domain W3C validator