Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isobs Structured version   Visualization version   GIF version

Theorem isobs 20266
 Description: The predicate "is an orthonormal basis" (over a pre-Hilbert space). (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
isobs.v 𝑉 = (Base‘𝑊)
isobs.h , = (·𝑖𝑊)
isobs.f 𝐹 = (Scalar‘𝑊)
isobs.u 1 = (1r𝐹)
isobs.z 0 = (0g𝐹)
isobs.o = (ocv‘𝑊)
isobs.y 𝑌 = (0g𝑊)
Assertion
Ref Expression
isobs (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})))
Distinct variable groups:   𝑥,𝑦, ,   𝑥, 0 ,𝑦   𝑥, 1 ,𝑦   𝑥,𝐵,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   (𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem isobs
Dummy variables 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-obs 20251 . . . . 5 OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
21dmmptss 5792 . . . 4 dom OBasis ⊆ PreHil
3 elfvdm 6381 . . . 4 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ dom OBasis)
42, 3sseldi 3742 . . 3 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil)
5 fveq2 6352 . . . . . . . . 9 ( = 𝑊 → (Base‘) = (Base‘𝑊))
6 isobs.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
75, 6syl6eqr 2812 . . . . . . . 8 ( = 𝑊 → (Base‘) = 𝑉)
87pweqd 4307 . . . . . . 7 ( = 𝑊 → 𝒫 (Base‘) = 𝒫 𝑉)
9 fveq2 6352 . . . . . . . . . . . 12 ( = 𝑊 → (·𝑖) = (·𝑖𝑊))
10 isobs.h . . . . . . . . . . . 12 , = (·𝑖𝑊)
119, 10syl6eqr 2812 . . . . . . . . . . 11 ( = 𝑊 → (·𝑖) = , )
1211oveqd 6830 . . . . . . . . . 10 ( = 𝑊 → (𝑥(·𝑖)𝑦) = (𝑥 , 𝑦))
13 fveq2 6352 . . . . . . . . . . . . . 14 ( = 𝑊 → (Scalar‘) = (Scalar‘𝑊))
14 isobs.f . . . . . . . . . . . . . 14 𝐹 = (Scalar‘𝑊)
1513, 14syl6eqr 2812 . . . . . . . . . . . . 13 ( = 𝑊 → (Scalar‘) = 𝐹)
1615fveq2d 6356 . . . . . . . . . . . 12 ( = 𝑊 → (1r‘(Scalar‘)) = (1r𝐹))
17 isobs.u . . . . . . . . . . . 12 1 = (1r𝐹)
1816, 17syl6eqr 2812 . . . . . . . . . . 11 ( = 𝑊 → (1r‘(Scalar‘)) = 1 )
1915fveq2d 6356 . . . . . . . . . . . 12 ( = 𝑊 → (0g‘(Scalar‘)) = (0g𝐹))
20 isobs.z . . . . . . . . . . . 12 0 = (0g𝐹)
2119, 20syl6eqr 2812 . . . . . . . . . . 11 ( = 𝑊 → (0g‘(Scalar‘)) = 0 )
2218, 21ifeq12d 4250 . . . . . . . . . 10 ( = 𝑊 → if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) = if(𝑥 = 𝑦, 1 , 0 ))
2312, 22eqeq12d 2775 . . . . . . . . 9 ( = 𝑊 → ((𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ↔ (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 )))
24232ralbidv 3127 . . . . . . . 8 ( = 𝑊 → (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ↔ ∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 )))
25 fveq2 6352 . . . . . . . . . . 11 ( = 𝑊 → (ocv‘) = (ocv‘𝑊))
26 isobs.o . . . . . . . . . . 11 = (ocv‘𝑊)
2725, 26syl6eqr 2812 . . . . . . . . . 10 ( = 𝑊 → (ocv‘) = )
2827fveq1d 6354 . . . . . . . . 9 ( = 𝑊 → ((ocv‘)‘𝑏) = ( 𝑏))
29 fveq2 6352 . . . . . . . . . . 11 ( = 𝑊 → (0g) = (0g𝑊))
30 isobs.y . . . . . . . . . . 11 𝑌 = (0g𝑊)
3129, 30syl6eqr 2812 . . . . . . . . . 10 ( = 𝑊 → (0g) = 𝑌)
3231sneqd 4333 . . . . . . . . 9 ( = 𝑊 → {(0g)} = {𝑌})
3328, 32eqeq12d 2775 . . . . . . . 8 ( = 𝑊 → (((ocv‘)‘𝑏) = {(0g)} ↔ ( 𝑏) = {𝑌}))
3424, 33anbi12d 749 . . . . . . 7 ( = 𝑊 → ((∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)}) ↔ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})))
358, 34rabeqbidv 3335 . . . . . 6 ( = 𝑊 → {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})} = {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})})
36 fvex 6362 . . . . . . . . 9 (Base‘𝑊) ∈ V
376, 36eqeltri 2835 . . . . . . . 8 𝑉 ∈ V
3837pwex 4997 . . . . . . 7 𝒫 𝑉 ∈ V
3938rabex 4964 . . . . . 6 {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})} ∈ V
4035, 1, 39fvmpt 6444 . . . . 5 (𝑊 ∈ PreHil → (OBasis‘𝑊) = {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})})
4140eleq2d 2825 . . . 4 (𝑊 ∈ PreHil → (𝐵 ∈ (OBasis‘𝑊) ↔ 𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})}))
42 raleq 3277 . . . . . . . 8 (𝑏 = 𝐵 → (∀𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ↔ ∀𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 )))
4342raleqbi1dv 3285 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 )))
44 fveq2 6352 . . . . . . . 8 (𝑏 = 𝐵 → ( 𝑏) = ( 𝐵))
4544eqeq1d 2762 . . . . . . 7 (𝑏 = 𝐵 → (( 𝑏) = {𝑌} ↔ ( 𝐵) = {𝑌}))
4643, 45anbi12d 749 . . . . . 6 (𝑏 = 𝐵 → ((∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌}) ↔ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})))
4746elrab 3504 . . . . 5 (𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})} ↔ (𝐵 ∈ 𝒫 𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})))
4837elpw2 4977 . . . . . 6 (𝐵 ∈ 𝒫 𝑉𝐵𝑉)
4948anbi1i 733 . . . . 5 ((𝐵 ∈ 𝒫 𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})) ↔ (𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})))
5047, 49bitri 264 . . . 4 (𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥𝑏𝑦𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝑏) = {𝑌})} ↔ (𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})))
5141, 50syl6bb 276 . . 3 (𝑊 ∈ PreHil → (𝐵 ∈ (OBasis‘𝑊) ↔ (𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌}))))
524, 51biadan2 677 . 2 (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ (𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌}))))
53 3anass 1081 . 2 ((𝑊 ∈ PreHil ∧ 𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})) ↔ (𝑊 ∈ PreHil ∧ (𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌}))))
5452, 53bitr4i 267 1 (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( 𝐵) = {𝑌})))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050  {crab 3054  Vcvv 3340   ⊆ wss 3715  ifcif 4230  𝒫 cpw 4302  {csn 4321  dom cdm 5266  ‘cfv 6049  (class class class)co 6813  Basecbs 16059  Scalarcsca 16146  ·𝑖cip 16148  0gc0g 16302  1rcur 18701  PreHilcphl 20171  ocvcocv 20206  OBasiscobs 20248 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fv 6057  df-ov 6816  df-obs 20251 This theorem is referenced by:  obsip  20267  obsrcl  20269  obsss  20270  obsocv  20272
 Copyright terms: Public domain W3C validator