![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iso0 | Structured version Visualization version GIF version |
Description: The empty set is an 𝑅, 𝑆 isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
Ref | Expression |
---|---|
iso0 | ⊢ ∅ Isom 𝑅, 𝑆 (∅, ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1o0 6314 | . 2 ⊢ ∅:∅–1-1-onto→∅ | |
2 | ral0 4217 | . 2 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ↔ (∅‘𝑥)𝑆(∅‘𝑦)) | |
3 | df-isom 6040 | . 2 ⊢ (∅ Isom 𝑅, 𝑆 (∅, ∅) ↔ (∅:∅–1-1-onto→∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ↔ (∅‘𝑥)𝑆(∅‘𝑦)))) | |
4 | 1, 2, 3 | mpbir2an 690 | 1 ⊢ ∅ Isom 𝑅, 𝑆 (∅, ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∀wral 3061 ∅c0 4063 class class class wbr 4786 –1-1-onto→wf1o 6030 ‘cfv 6031 Isom wiso 6032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-isom 6040 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |