MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnzr2 Structured version   Visualization version   GIF version

Theorem isnzr2 19203
Description: Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
isnzr2.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
isnzr2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2𝑜𝐵))

Proof of Theorem isnzr2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . 3 (1r𝑅) = (1r𝑅)
2 eqid 2621 . . 3 (0g𝑅) = (0g𝑅)
31, 2isnzr 19199 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
4 isnzr2.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
54, 1ringidcl 18508 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
65adantr 481 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (1r𝑅) ∈ 𝐵)
74, 2ring0cl 18509 . . . . . . . . 9 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
87adantr 481 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (0g𝑅) ∈ 𝐵)
9 simpr 477 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (1r𝑅) ≠ (0g𝑅))
10 df-ne 2791 . . . . . . . . . 10 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
11 neeq1 2852 . . . . . . . . . 10 (𝑥 = (1r𝑅) → (𝑥𝑦 ↔ (1r𝑅) ≠ 𝑦))
1210, 11syl5bbr 274 . . . . . . . . 9 (𝑥 = (1r𝑅) → (¬ 𝑥 = 𝑦 ↔ (1r𝑅) ≠ 𝑦))
13 neeq2 2853 . . . . . . . . 9 (𝑦 = (0g𝑅) → ((1r𝑅) ≠ 𝑦 ↔ (1r𝑅) ≠ (0g𝑅)))
1412, 13rspc2ev 3313 . . . . . . . 8 (((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵 ∧ (1r𝑅) ≠ (0g𝑅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦)
156, 8, 9, 14syl3anc 1323 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦)
1615ex 450 . . . . . 6 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦))
174, 1, 2ring1eq0 18530 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
18173expb 1263 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
1918necon3bd 2804 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (¬ 𝑥 = 𝑦 → (1r𝑅) ≠ (0g𝑅)))
2019rexlimdvva 3033 . . . . . 6 (𝑅 ∈ Ring → (∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦 → (1r𝑅) ≠ (0g𝑅)))
2116, 20impbid 202 . . . . 5 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦))
22 fvex 6168 . . . . . . 7 (Base‘𝑅) ∈ V
234, 22eqeltri 2694 . . . . . 6 𝐵 ∈ V
24 1sdom 8123 . . . . . 6 (𝐵 ∈ V → (1𝑜𝐵 ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦))
2523, 24ax-mp 5 . . . . 5 (1𝑜𝐵 ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦)
2621, 25syl6bbr 278 . . . 4 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) ↔ 1𝑜𝐵))
27 1onn 7679 . . . . . 6 1𝑜 ∈ ω
28 sucdom 8117 . . . . . 6 (1𝑜 ∈ ω → (1𝑜𝐵 ↔ suc 1𝑜𝐵))
2927, 28ax-mp 5 . . . . 5 (1𝑜𝐵 ↔ suc 1𝑜𝐵)
30 df-2o 7521 . . . . . 6 2𝑜 = suc 1𝑜
3130breq1i 4630 . . . . 5 (2𝑜𝐵 ↔ suc 1𝑜𝐵)
3229, 31bitr4i 267 . . . 4 (1𝑜𝐵 ↔ 2𝑜𝐵)
3326, 32syl6bb 276 . . 3 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) ↔ 2𝑜𝐵))
3433pm5.32i 668 . 2 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) ↔ (𝑅 ∈ Ring ∧ 2𝑜𝐵))
353, 34bitri 264 1 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2𝑜𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wrex 2909  Vcvv 3190   class class class wbr 4623  suc csuc 5694  cfv 5857  ωcom 7027  1𝑜c1o 7513  2𝑜c2o 7514  cdom 7913  csdm 7914  Basecbs 15800  0gc0g 16040  1rcur 18441  Ringcrg 18487  NzRingcnzr 19197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-plusg 15894  df-0g 16042  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-grp 17365  df-minusg 17366  df-mgp 18430  df-ur 18442  df-ring 18489  df-nzr 19198
This theorem is referenced by:  opprnzr  19205  znfld  19849  znidomb  19850
  Copyright terms: Public domain W3C validator