![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnzr2 | Structured version Visualization version GIF version |
Description: Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
isnzr2.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
isnzr2 | ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2𝑜 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2770 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
2 | eqid 2770 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | 1, 2 | isnzr 19473 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
4 | isnzr2.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 4, 1 | ringidcl 18775 | . . . . . . . . 9 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
6 | 5 | adantr 466 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (1r‘𝑅) ∈ 𝐵) |
7 | 4, 2 | ring0cl 18776 | . . . . . . . . 9 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ 𝐵) |
8 | 7 | adantr 466 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (0g‘𝑅) ∈ 𝐵) |
9 | simpr 471 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (1r‘𝑅) ≠ (0g‘𝑅)) | |
10 | df-ne 2943 | . . . . . . . . . 10 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
11 | neeq1 3004 | . . . . . . . . . 10 ⊢ (𝑥 = (1r‘𝑅) → (𝑥 ≠ 𝑦 ↔ (1r‘𝑅) ≠ 𝑦)) | |
12 | 10, 11 | syl5bbr 274 | . . . . . . . . 9 ⊢ (𝑥 = (1r‘𝑅) → (¬ 𝑥 = 𝑦 ↔ (1r‘𝑅) ≠ 𝑦)) |
13 | neeq2 3005 | . . . . . . . . 9 ⊢ (𝑦 = (0g‘𝑅) → ((1r‘𝑅) ≠ 𝑦 ↔ (1r‘𝑅) ≠ (0g‘𝑅))) | |
14 | 12, 13 | rspc2ev 3472 | . . . . . . . 8 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵 ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦) |
15 | 6, 8, 9, 14 | syl3anc 1475 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦) |
16 | 15 | ex 397 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦)) |
17 | 4, 1, 2 | ring1eq0 18797 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((1r‘𝑅) = (0g‘𝑅) → 𝑥 = 𝑦)) |
18 | 17 | 3expb 1112 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((1r‘𝑅) = (0g‘𝑅) → 𝑥 = 𝑦)) |
19 | 18 | necon3bd 2956 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (¬ 𝑥 = 𝑦 → (1r‘𝑅) ≠ (0g‘𝑅))) |
20 | 19 | rexlimdvva 3185 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦 → (1r‘𝑅) ≠ (0g‘𝑅))) |
21 | 16, 20 | impbid 202 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦)) |
22 | fvex 6342 | . . . . . . 7 ⊢ (Base‘𝑅) ∈ V | |
23 | 4, 22 | eqeltri 2845 | . . . . . 6 ⊢ 𝐵 ∈ V |
24 | 1sdom 8318 | . . . . . 6 ⊢ (𝐵 ∈ V → (1𝑜 ≺ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦)) | |
25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ (1𝑜 ≺ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦) |
26 | 21, 25 | syl6bbr 278 | . . . 4 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) ↔ 1𝑜 ≺ 𝐵)) |
27 | 1onn 7872 | . . . . . 6 ⊢ 1𝑜 ∈ ω | |
28 | sucdom 8312 | . . . . . 6 ⊢ (1𝑜 ∈ ω → (1𝑜 ≺ 𝐵 ↔ suc 1𝑜 ≼ 𝐵)) | |
29 | 27, 28 | ax-mp 5 | . . . . 5 ⊢ (1𝑜 ≺ 𝐵 ↔ suc 1𝑜 ≼ 𝐵) |
30 | df-2o 7713 | . . . . . 6 ⊢ 2𝑜 = suc 1𝑜 | |
31 | 30 | breq1i 4791 | . . . . 5 ⊢ (2𝑜 ≼ 𝐵 ↔ suc 1𝑜 ≼ 𝐵) |
32 | 29, 31 | bitr4i 267 | . . . 4 ⊢ (1𝑜 ≺ 𝐵 ↔ 2𝑜 ≼ 𝐵) |
33 | 26, 32 | syl6bb 276 | . . 3 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) ↔ 2𝑜 ≼ 𝐵)) |
34 | 33 | pm5.32i 556 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) ↔ (𝑅 ∈ Ring ∧ 2𝑜 ≼ 𝐵)) |
35 | 3, 34 | bitri 264 | 1 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2𝑜 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 ∃wrex 3061 Vcvv 3349 class class class wbr 4784 suc csuc 5868 ‘cfv 6031 ωcom 7211 1𝑜c1o 7705 2𝑜c2o 7706 ≼ cdom 8106 ≺ csdm 8107 Basecbs 16063 0gc0g 16307 1rcur 18708 Ringcrg 18754 NzRingcnzr 19471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-plusg 16161 df-0g 16309 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-grp 17632 df-minusg 17633 df-mgp 18697 df-ur 18709 df-ring 18756 df-nzr 19472 |
This theorem is referenced by: opprnzr 19479 znfld 20123 znidomb 20124 |
Copyright terms: Public domain | W3C validator |