MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnvc2 Structured version   Visualization version   GIF version

Theorem isnvc2 22723
Description: A normed vector space is just a normed module whose scalar ring is a division ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
isnvc2.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
isnvc2 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing))

Proof of Theorem isnvc2
StepHypRef Expression
1 isnvc 22719 . 2 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
2 nlmlmod 22702 . . . 4 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
3 isnvc2.1 . . . . . 6 𝐹 = (Scalar‘𝑊)
43islvec 19317 . . . . 5 (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing))
54baib 525 . . . 4 (𝑊 ∈ LMod → (𝑊 ∈ LVec ↔ 𝐹 ∈ DivRing))
62, 5syl 17 . . 3 (𝑊 ∈ NrmMod → (𝑊 ∈ LVec ↔ 𝐹 ∈ DivRing))
76pm5.32i 564 . 2 ((𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec) ↔ (𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing))
81, 7bitri 264 1 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382   = wceq 1631  wcel 2145  cfv 6030  Scalarcsca 16152  DivRingcdr 18957  LModclmod 19073  LVecclvec 19315  NrmModcnlm 22605  NrmVeccnvc 22606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-nul 4924
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-iota 5993  df-fv 6038  df-ov 6799  df-lvec 19316  df-nlm 22611  df-nvc 22612
This theorem is referenced by:  lssnvc  22726  srabn  23375
  Copyright terms: Public domain W3C validator