![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnv | Structured version Visualization version GIF version |
Description: The predicate "is a normed complex vector space." (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isnv.1 | ⊢ 𝑋 = ran 𝐺 |
isnv.2 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
isnv | ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvex 27797 | . 2 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) | |
2 | vcex 27764 | . . . . 5 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | |
3 | 2 | adantr 472 | . . . 4 ⊢ ((〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ) → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
4 | isnv.1 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
5 | 2 | simpld 477 | . . . . . . . 8 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → 𝐺 ∈ V) |
6 | rnexg 7265 | . . . . . . . 8 ⊢ (𝐺 ∈ V → ran 𝐺 ∈ V) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → ran 𝐺 ∈ V) |
8 | 4, 7 | syl5eqel 2844 | . . . . . 6 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → 𝑋 ∈ V) |
9 | fex 6655 | . . . . . 6 ⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V) → 𝑁 ∈ V) | |
10 | 8, 9 | sylan2 492 | . . . . 5 ⊢ ((𝑁:𝑋⟶ℝ ∧ 〈𝐺, 𝑆〉 ∈ CVecOLD) → 𝑁 ∈ V) |
11 | 10 | ancoms 468 | . . . 4 ⊢ ((〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ) → 𝑁 ∈ V) |
12 | df-3an 1074 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ↔ ((𝐺 ∈ V ∧ 𝑆 ∈ V) ∧ 𝑁 ∈ V)) | |
13 | 3, 11, 12 | sylanbrc 701 | . . 3 ⊢ ((〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ) → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) |
14 | 13 | 3adant3 1127 | . 2 ⊢ ((〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) |
15 | isnv.2 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
16 | 4, 15 | isnvlem 27796 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) → (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))))) |
17 | 1, 14, 16 | pm5.21nii 367 | 1 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 ∀wral 3051 Vcvv 3341 〈cop 4328 class class class wbr 4805 ran crn 5268 ⟶wf 6046 ‘cfv 6050 (class class class)co 6815 ℂcc 10147 ℝcr 10148 0cc0 10149 + caddc 10152 · cmul 10154 ≤ cle 10288 abscabs 14194 GIdcgi 27675 CVecOLDcvc 27744 NrmCVeccnv 27770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-oprab 6819 df-vc 27745 df-nv 27778 |
This theorem is referenced by: isnvi 27799 nvi 27800 |
Copyright terms: Public domain | W3C validator |