Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnumbasgrplem3 Structured version   Visualization version   GIF version

Theorem isnumbasgrplem3 37992
Description: Every nonempty numerable set can be given the structure of an Abelian group, either a finite cyclic group or a vector space over Z/2Z. (Contributed by Stefan O'Rear, 10-Jul-2015.)
Assertion
Ref Expression
isnumbasgrplem3 ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel))

Proof of Theorem isnumbasgrplem3
StepHypRef Expression
1 hashcl 13185 . . . . . 6 (𝑆 ∈ Fin → (#‘𝑆) ∈ ℕ0)
21adantl 481 . . . . 5 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (#‘𝑆) ∈ ℕ0)
3 eqid 2651 . . . . . 6 (ℤ/nℤ‘(#‘𝑆)) = (ℤ/nℤ‘(#‘𝑆))
43zncrng 19941 . . . . 5 ((#‘𝑆) ∈ ℕ0 → (ℤ/nℤ‘(#‘𝑆)) ∈ CRing)
5 crngring 18604 . . . . 5 ((ℤ/nℤ‘(#‘𝑆)) ∈ CRing → (ℤ/nℤ‘(#‘𝑆)) ∈ Ring)
6 ringabl 18626 . . . . 5 ((ℤ/nℤ‘(#‘𝑆)) ∈ Ring → (ℤ/nℤ‘(#‘𝑆)) ∈ Abel)
72, 4, 5, 64syl 19 . . . 4 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (ℤ/nℤ‘(#‘𝑆)) ∈ Abel)
8 hashnncl 13195 . . . . . . . 8 (𝑆 ∈ Fin → ((#‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅))
98biimparc 503 . . . . . . 7 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (#‘𝑆) ∈ ℕ)
10 eqid 2651 . . . . . . . 8 (Base‘(ℤ/nℤ‘(#‘𝑆))) = (Base‘(ℤ/nℤ‘(#‘𝑆)))
113, 10znhash 19955 . . . . . . 7 ((#‘𝑆) ∈ ℕ → (#‘(Base‘(ℤ/nℤ‘(#‘𝑆)))) = (#‘𝑆))
129, 11syl 17 . . . . . 6 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (#‘(Base‘(ℤ/nℤ‘(#‘𝑆)))) = (#‘𝑆))
1312eqcomd 2657 . . . . 5 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (#‘𝑆) = (#‘(Base‘(ℤ/nℤ‘(#‘𝑆)))))
14 simpr 476 . . . . . 6 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ∈ Fin)
153, 10znfi 19956 . . . . . . 7 ((#‘𝑆) ∈ ℕ → (Base‘(ℤ/nℤ‘(#‘𝑆))) ∈ Fin)
169, 15syl 17 . . . . . 6 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (Base‘(ℤ/nℤ‘(#‘𝑆))) ∈ Fin)
17 hashen 13175 . . . . . 6 ((𝑆 ∈ Fin ∧ (Base‘(ℤ/nℤ‘(#‘𝑆))) ∈ Fin) → ((#‘𝑆) = (#‘(Base‘(ℤ/nℤ‘(#‘𝑆)))) ↔ 𝑆 ≈ (Base‘(ℤ/nℤ‘(#‘𝑆)))))
1814, 16, 17syl2anc 694 . . . . 5 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → ((#‘𝑆) = (#‘(Base‘(ℤ/nℤ‘(#‘𝑆)))) ↔ 𝑆 ≈ (Base‘(ℤ/nℤ‘(#‘𝑆)))))
1913, 18mpbid 222 . . . 4 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ≈ (Base‘(ℤ/nℤ‘(#‘𝑆))))
2010isnumbasgrplem1 37988 . . . 4 (((ℤ/nℤ‘(#‘𝑆)) ∈ Abel ∧ 𝑆 ≈ (Base‘(ℤ/nℤ‘(#‘𝑆)))) → 𝑆 ∈ (Base “ Abel))
217, 19, 20syl2anc 694 . . 3 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel))
2221adantll 750 . 2 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel))
23 2nn0 11347 . . . . . . 7 2 ∈ ℕ0
24 eqid 2651 . . . . . . . 8 (ℤ/nℤ‘2) = (ℤ/nℤ‘2)
2524zncrng 19941 . . . . . . 7 (2 ∈ ℕ0 → (ℤ/nℤ‘2) ∈ CRing)
26 crngring 18604 . . . . . . 7 ((ℤ/nℤ‘2) ∈ CRing → (ℤ/nℤ‘2) ∈ Ring)
2723, 25, 26mp2b 10 . . . . . 6 (ℤ/nℤ‘2) ∈ Ring
28 eqid 2651 . . . . . . 7 ((ℤ/nℤ‘2) freeLMod 𝑆) = ((ℤ/nℤ‘2) freeLMod 𝑆)
2928frlmlmod 20141 . . . . . 6 (((ℤ/nℤ‘2) ∈ Ring ∧ 𝑆 ∈ dom card) → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod)
3027, 29mpan 706 . . . . 5 (𝑆 ∈ dom card → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod)
31 lmodabl 18958 . . . . 5 (((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel)
3230, 31syl 17 . . . 4 (𝑆 ∈ dom card → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel)
3332ad2antrr 762 . . 3 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel)
34 eqid 2651 . . . . . . 7 (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) = (Base‘((ℤ/nℤ‘2) freeLMod 𝑆))
3524, 28, 34frlmpwfi 37985 . . . . . 6 (𝑆 ∈ dom card → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin))
3635ad2antrr 762 . . . . 5 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin))
37 simpll 805 . . . . . 6 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ dom card)
38 numinfctb 37990 . . . . . . 7 ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆)
3938adantlr 751 . . . . . 6 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆)
40 infpwfien 8923 . . . . . 6 ((𝑆 ∈ dom card ∧ ω ≼ 𝑆) → (𝒫 𝑆 ∩ Fin) ≈ 𝑆)
4137, 39, 40syl2anc 694 . . . . 5 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (𝒫 𝑆 ∩ Fin) ≈ 𝑆)
42 entr 8049 . . . . 5 (((Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin) ∧ (𝒫 𝑆 ∩ Fin) ≈ 𝑆) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ 𝑆)
4336, 41, 42syl2anc 694 . . . 4 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ 𝑆)
4443ensymd 8048 . . 3 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ≈ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)))
4534isnumbasgrplem1 37988 . . 3 ((((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel ∧ 𝑆 ≈ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆))) → 𝑆 ∈ (Base “ Abel))
4633, 44, 45syl2anc 694 . 2 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel))
4722, 46pm2.61dan 849 1 ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  cin 3606  c0 3948  𝒫 cpw 4191   class class class wbr 4685  dom cdm 5143  cima 5146  cfv 5926  (class class class)co 6690  ωcom 7107  cen 7994  cdom 7995  Fincfn 7997  cardccrd 8799  cn 11058  2c2 11108  0cn0 11330  #chash 13157  Basecbs 15904  Abelcabl 18240  Ringcrg 18593  CRingccrg 18594  LModclmod 18911  ℤ/nczn 19899   freeLMod cfrlm 20138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-seqom 7588  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-ec 7789  df-qs 7793  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-hash 13158  df-dvds 15028  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-0g 16149  df-prds 16155  df-pws 16157  df-imas 16215  df-qus 16216  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-nsg 17639  df-eqg 17640  df-ghm 17705  df-gim 17748  df-gic 17749  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-rnghom 18763  df-subrg 18826  df-lmod 18913  df-lss 18981  df-lsp 19020  df-sra 19220  df-rgmod 19221  df-lidl 19222  df-rsp 19223  df-2idl 19280  df-cnfld 19795  df-zring 19867  df-zrh 19900  df-zn 19903  df-dsmm 20124  df-frlm 20139
This theorem is referenced by:  isnumbasabl  37993  dfacbasgrp  37995
  Copyright terms: Public domain W3C validator