Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnumbasgrplem2 Structured version   Visualization version   GIF version

Theorem isnumbasgrplem2 38195
Description: If the (to be thought of as disjoint, although the proof does not require this) union of a set and its Hartogs number supports a group structure (more generally, a cancellative magma), then the set must be numerable. (Contributed by Stefan O'Rear, 9-Jul-2015.)
Assertion
Ref Expression
isnumbasgrplem2 ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) → 𝑆 ∈ dom card)

Proof of Theorem isnumbasgrplem2
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 16100 . . 3 Base Fn V
2 ssv 3767 . . 3 Grp ⊆ V
3 fvelimab 6417 . . 3 ((Base Fn V ∧ Grp ⊆ V) → ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) ↔ ∃𝑥 ∈ Grp (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))))
41, 2, 3mp2an 710 . 2 ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) ↔ ∃𝑥 ∈ Grp (Base‘𝑥) = (𝑆 ∪ (har‘𝑆)))
5 harcl 8634 . . . . . 6 (har‘𝑆) ∈ On
6 onenon 8986 . . . . . 6 ((har‘𝑆) ∈ On → (har‘𝑆) ∈ dom card)
75, 6ax-mp 5 . . . . 5 (har‘𝑆) ∈ dom card
8 xpnum 8988 . . . . 5 (((har‘𝑆) ∈ dom card ∧ (har‘𝑆) ∈ dom card) → ((har‘𝑆) × (har‘𝑆)) ∈ dom card)
97, 7, 8mp2an 710 . . . 4 ((har‘𝑆) × (har‘𝑆)) ∈ dom card
10 ssun1 3920 . . . . . . . 8 𝑆 ⊆ (𝑆 ∪ (har‘𝑆))
11 simpr 479 . . . . . . . 8 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → (Base‘𝑥) = (𝑆 ∪ (har‘𝑆)))
1210, 11syl5sseqr 3796 . . . . . . 7 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆 ⊆ (Base‘𝑥))
13 fvex 6364 . . . . . . . 8 (Base‘𝑥) ∈ V
1413ssex 4955 . . . . . . 7 (𝑆 ⊆ (Base‘𝑥) → 𝑆 ∈ V)
1512, 14syl 17 . . . . . 6 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆 ∈ V)
167a1i 11 . . . . . 6 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → (har‘𝑆) ∈ dom card)
17 simp1l 1240 . . . . . . . 8 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → 𝑥 ∈ Grp)
18123ad2ant1 1128 . . . . . . . . 9 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → 𝑆 ⊆ (Base‘𝑥))
19 simp2 1132 . . . . . . . . 9 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → 𝑎𝑆)
2018, 19sseldd 3746 . . . . . . . 8 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → 𝑎 ∈ (Base‘𝑥))
21 ssun2 3921 . . . . . . . . . . 11 (har‘𝑆) ⊆ (𝑆 ∪ (har‘𝑆))
2221, 11syl5sseqr 3796 . . . . . . . . . 10 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → (har‘𝑆) ⊆ (Base‘𝑥))
23223ad2ant1 1128 . . . . . . . . 9 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → (har‘𝑆) ⊆ (Base‘𝑥))
24 simp3 1133 . . . . . . . . 9 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → 𝑐 ∈ (har‘𝑆))
2523, 24sseldd 3746 . . . . . . . 8 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → 𝑐 ∈ (Base‘𝑥))
26 eqid 2761 . . . . . . . . 9 (Base‘𝑥) = (Base‘𝑥)
27 eqid 2761 . . . . . . . . 9 (+g𝑥) = (+g𝑥)
2826, 27grpcl 17652 . . . . . . . 8 ((𝑥 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑥) ∧ 𝑐 ∈ (Base‘𝑥)) → (𝑎(+g𝑥)𝑐) ∈ (Base‘𝑥))
2917, 20, 25, 28syl3anc 1477 . . . . . . 7 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → (𝑎(+g𝑥)𝑐) ∈ (Base‘𝑥))
30 simp1r 1241 . . . . . . 7 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → (Base‘𝑥) = (𝑆 ∪ (har‘𝑆)))
3129, 30eleqtrd 2842 . . . . . 6 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → (𝑎(+g𝑥)𝑐) ∈ (𝑆 ∪ (har‘𝑆)))
32 simplll 815 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑥 ∈ Grp)
3322ad2antrr 764 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → (har‘𝑆) ⊆ (Base‘𝑥))
34 simprl 811 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑐 ∈ (har‘𝑆))
3533, 34sseldd 3746 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑐 ∈ (Base‘𝑥))
36 simprr 813 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑑 ∈ (har‘𝑆))
3733, 36sseldd 3746 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑑 ∈ (Base‘𝑥))
3812ad2antrr 764 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑆 ⊆ (Base‘𝑥))
39 simplr 809 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑎𝑆)
4038, 39sseldd 3746 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑎 ∈ (Base‘𝑥))
4126, 27grplcan 17699 . . . . . . 7 ((𝑥 ∈ Grp ∧ (𝑐 ∈ (Base‘𝑥) ∧ 𝑑 ∈ (Base‘𝑥) ∧ 𝑎 ∈ (Base‘𝑥))) → ((𝑎(+g𝑥)𝑐) = (𝑎(+g𝑥)𝑑) ↔ 𝑐 = 𝑑))
4232, 35, 37, 40, 41syl13anc 1479 . . . . . 6 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → ((𝑎(+g𝑥)𝑐) = (𝑎(+g𝑥)𝑑) ↔ 𝑐 = 𝑑))
43 simplll 815 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑥 ∈ Grp)
4412ad2antrr 764 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑆 ⊆ (Base‘𝑥))
45 simprr 813 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑑𝑆)
4644, 45sseldd 3746 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑑 ∈ (Base‘𝑥))
47 simprl 811 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑎𝑆)
4844, 47sseldd 3746 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑎 ∈ (Base‘𝑥))
4922ad2antrr 764 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → (har‘𝑆) ⊆ (Base‘𝑥))
50 simplr 809 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑏 ∈ (har‘𝑆))
5149, 50sseldd 3746 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑏 ∈ (Base‘𝑥))
5226, 27grprcan 17677 . . . . . . 7 ((𝑥 ∈ Grp ∧ (𝑑 ∈ (Base‘𝑥) ∧ 𝑎 ∈ (Base‘𝑥) ∧ 𝑏 ∈ (Base‘𝑥))) → ((𝑑(+g𝑥)𝑏) = (𝑎(+g𝑥)𝑏) ↔ 𝑑 = 𝑎))
5343, 46, 48, 51, 52syl13anc 1479 . . . . . 6 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → ((𝑑(+g𝑥)𝑏) = (𝑎(+g𝑥)𝑏) ↔ 𝑑 = 𝑎))
54 harndom 8637 . . . . . . 7 ¬ (har‘𝑆) ≼ 𝑆
5554a1i 11 . . . . . 6 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → ¬ (har‘𝑆) ≼ 𝑆)
5615, 16, 16, 31, 42, 53, 55unxpwdom3 38186 . . . . 5 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆* ((har‘𝑆) × (har‘𝑆)))
57 wdomnumr 9098 . . . . . 6 (((har‘𝑆) × (har‘𝑆)) ∈ dom card → (𝑆* ((har‘𝑆) × (har‘𝑆)) ↔ 𝑆 ≼ ((har‘𝑆) × (har‘𝑆))))
589, 57ax-mp 5 . . . . 5 (𝑆* ((har‘𝑆) × (har‘𝑆)) ↔ 𝑆 ≼ ((har‘𝑆) × (har‘𝑆)))
5956, 58sylib 208 . . . 4 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆 ≼ ((har‘𝑆) × (har‘𝑆)))
60 numdom 9072 . . . 4 ((((har‘𝑆) × (har‘𝑆)) ∈ dom card ∧ 𝑆 ≼ ((har‘𝑆) × (har‘𝑆))) → 𝑆 ∈ dom card)
619, 59, 60sylancr 698 . . 3 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆 ∈ dom card)
6261rexlimiva 3167 . 2 (∃𝑥 ∈ Grp (Base‘𝑥) = (𝑆 ∪ (har‘𝑆)) → 𝑆 ∈ dom card)
634, 62sylbi 207 1 ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) → 𝑆 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140  wrex 3052  Vcvv 3341  cun 3714  wss 3716   class class class wbr 4805   × cxp 5265  dom cdm 5267  cima 5270  Oncon0 5885   Fn wfn 6045  cfv 6050  (class class class)co 6815  cdom 8122  harchar 8629  * cwdom 8630  cardccrd 8972  Basecbs 16080  +gcplusg 16164  Grpcgrp 17644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-omul 7736  df-er 7914  df-map 8028  df-en 8125  df-dom 8126  df-sdom 8127  df-oi 8583  df-har 8631  df-wdom 8632  df-card 8976  df-acn 8979  df-slot 16084  df-base 16086  df-0g 16325  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-grp 17647  df-minusg 17648
This theorem is referenced by:  isnumbasabl  38197  isnumbasgrp  38198
  Copyright terms: Public domain W3C validator