![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isnumbasabl | Structured version Visualization version GIF version |
Description: A set is numerable iff it and its Hartogs number can be jointly given the structure of an Abelian group. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
Ref | Expression |
---|---|
isnumbasabl | ⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | harcl 8621 | . . . . 5 ⊢ (har‘𝑆) ∈ On | |
2 | onenon 8974 | . . . . 5 ⊢ ((har‘𝑆) ∈ On → (har‘𝑆) ∈ dom card) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (har‘𝑆) ∈ dom card |
4 | unnum 9223 | . . . 4 ⊢ ((𝑆 ∈ dom card ∧ (har‘𝑆) ∈ dom card) → (𝑆 ∪ (har‘𝑆)) ∈ dom card) | |
5 | 3, 4 | mpan2 663 | . . 3 ⊢ (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ∈ dom card) |
6 | ssun2 3926 | . . . 4 ⊢ (har‘𝑆) ⊆ (𝑆 ∪ (har‘𝑆)) | |
7 | harn0 38191 | . . . 4 ⊢ (𝑆 ∈ dom card → (har‘𝑆) ≠ ∅) | |
8 | ssn0 4118 | . . . 4 ⊢ (((har‘𝑆) ⊆ (𝑆 ∪ (har‘𝑆)) ∧ (har‘𝑆) ≠ ∅) → (𝑆 ∪ (har‘𝑆)) ≠ ∅) | |
9 | 6, 7, 8 | sylancr 567 | . . 3 ⊢ (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ≠ ∅) |
10 | isnumbasgrplem3 38194 | . . 3 ⊢ (((𝑆 ∪ (har‘𝑆)) ∈ dom card ∧ (𝑆 ∪ (har‘𝑆)) ≠ ∅) → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) | |
11 | 5, 9, 10 | syl2anc 565 | . 2 ⊢ (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) |
12 | ablgrp 18404 | . . . . . 6 ⊢ (𝑥 ∈ Abel → 𝑥 ∈ Grp) | |
13 | 12 | ssriv 3754 | . . . . 5 ⊢ Abel ⊆ Grp |
14 | imass2 5642 | . . . . 5 ⊢ (Abel ⊆ Grp → (Base “ Abel) ⊆ (Base “ Grp)) | |
15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ (Base “ Abel) ⊆ (Base “ Grp) |
16 | 15 | sseli 3746 | . . 3 ⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel) → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp)) |
17 | isnumbasgrplem2 38193 | . . 3 ⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) → 𝑆 ∈ dom card) | |
18 | 16, 17 | syl 17 | . 2 ⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel) → 𝑆 ∈ dom card) |
19 | 11, 18 | impbii 199 | 1 ⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2144 ≠ wne 2942 ∪ cun 3719 ⊆ wss 3721 ∅c0 4061 dom cdm 5249 “ cima 5252 Oncon0 5866 ‘cfv 6031 harchar 8616 cardccrd 8960 Basecbs 16063 Grpcgrp 17629 Abelcabl 18400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-addf 10216 ax-mulf 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-tpos 7503 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-seqom 7695 df-1o 7712 df-2o 7713 df-oadd 7716 df-omul 7717 df-er 7895 df-ec 7897 df-qs 7901 df-map 8010 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-sup 8503 df-inf 8504 df-oi 8570 df-har 8618 df-wdom 8619 df-card 8964 df-acn 8967 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-rp 12035 df-fz 12533 df-fzo 12673 df-fl 12800 df-mod 12876 df-seq 13008 df-hash 13321 df-dvds 15189 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-starv 16163 df-sca 16164 df-vsca 16165 df-ip 16166 df-tset 16167 df-ple 16168 df-ds 16171 df-unif 16172 df-hom 16173 df-cco 16174 df-0g 16309 df-prds 16315 df-pws 16317 df-imas 16375 df-qus 16376 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-mhm 17542 df-grp 17632 df-minusg 17633 df-sbg 17634 df-mulg 17748 df-subg 17798 df-nsg 17799 df-eqg 17800 df-ghm 17865 df-gim 17908 df-gic 17909 df-cmn 18401 df-abl 18402 df-mgp 18697 df-ur 18709 df-ring 18756 df-cring 18757 df-oppr 18830 df-dvdsr 18848 df-rnghom 18924 df-subrg 18987 df-lmod 19074 df-lss 19142 df-lsp 19184 df-sra 19386 df-rgmod 19387 df-lidl 19388 df-rsp 19389 df-2idl 19446 df-cnfld 19961 df-zring 20033 df-zrh 20066 df-zn 20069 df-dsmm 20292 df-frlm 20307 |
This theorem is referenced by: isnumbasgrp 38196 |
Copyright terms: Public domain | W3C validator |