MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnsqf Structured version   Visualization version   GIF version

Theorem isnsqf 25060
Description: Two ways to say that a number is not squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
isnsqf (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴))
Distinct variable group:   𝐴,𝑝

Proof of Theorem isnsqf
StepHypRef Expression
1 prmdvdsfi 25032 . . . . . . . 8 (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin)
2 hashcl 13339 . . . . . . . 8 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0)
31, 2syl 17 . . . . . . 7 (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0)
43nn0zd 11672 . . . . . 6 (𝐴 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℤ)
5 neg1cn 11316 . . . . . . 7 -1 ∈ ℂ
6 neg1ne0 11318 . . . . . . 7 -1 ≠ 0
7 expne0i 13086 . . . . . . 7 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℤ) → (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) ≠ 0)
85, 6, 7mp3an12 1563 . . . . . 6 ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℤ → (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) ≠ 0)
94, 8syl 17 . . . . 5 (𝐴 ∈ ℕ → (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) ≠ 0)
10 iffalse 4239 . . . . . 6 (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
1110neeq1d 2991 . . . . 5 (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → (if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) ≠ 0 ↔ (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) ≠ 0))
129, 11syl5ibrcom 237 . . . 4 (𝐴 ∈ ℕ → (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) ≠ 0))
13 muval 25057 . . . . 5 (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
1413neeq1d 2991 . . . 4 (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) ≠ 0))
1512, 14sylibrd 249 . . 3 (𝐴 ∈ ℕ → (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → (μ‘𝐴) ≠ 0))
1615necon4bd 2952 . 2 (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴))
17 iftrue 4236 . . 3 (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 0)
1813eqeq1d 2762 . . 3 (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 0))
1917, 18syl5ibr 236 . 2 (𝐴 ∈ ℕ → (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → (μ‘𝐴) = 0))
2016, 19impbid 202 1 (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196   = wceq 1632  wcel 2139  wne 2932  wrex 3051  {crab 3054  ifcif 4230   class class class wbr 4804  cfv 6049  (class class class)co 6813  Fincfn 8121  cc 10126  0cc0 10128  1c1 10129  -cneg 10459  cn 11212  2c2 11262  0cn0 11484  cz 11569  cexp 13054  chash 13311  cdvds 15182  cprime 15587  μcmu 25020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-seq 12996  df-exp 13055  df-hash 13312  df-dvds 15183  df-prm 15588  df-mu 25026
This theorem is referenced by:  issqf  25061  dvdssqf  25063  mumullem1  25104
  Copyright terms: Public domain W3C validator