MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnsg2 Structured version   Visualization version   GIF version

Theorem isnsg2 17618
Description: Weaken the condition of isnsg 17617 to only one side of the implication. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1 𝑋 = (Base‘𝐺)
isnsg.2 + = (+g𝐺)
Assertion
Ref Expression
isnsg2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isnsg2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isnsg.1 . . 3 𝑋 = (Base‘𝐺)
2 isnsg.2 . . 3 + = (+g𝐺)
31, 2isnsg 17617 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆)))
4 dfbi2 660 . . . . . . 7 (((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
54ralbii 2979 . . . . . 6 (∀𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑧𝑋 (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
65ralbii 2979 . . . . 5 (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑥𝑋𝑧𝑋 (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
7 r19.26-2 3063 . . . . 5 (∀𝑥𝑋𝑧𝑋 (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)) ↔ (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
86, 7bitri 264 . . . 4 (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
9 oveq2 6655 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑥 + 𝑧) = (𝑥 + 𝑦))
109eleq1d 2685 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑥 + 𝑦) ∈ 𝑆))
11 oveq1 6654 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧 + 𝑥) = (𝑦 + 𝑥))
1211eleq1d 2685 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑧 + 𝑥) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))
1310, 12imbi12d 334 . . . . . . 7 (𝑧 = 𝑦 → (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ↔ ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
1413cbvralv 3169 . . . . . 6 (∀𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
1514ralbii 2979 . . . . 5 (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
16 ralcom 3096 . . . . . 6 (∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ∀𝑧𝑋𝑥𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆))
17 oveq2 6655 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑧 + 𝑥) = (𝑧 + 𝑦))
1817eleq1d 2685 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑧 + 𝑥) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆))
19 oveq1 6654 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 + 𝑧) = (𝑦 + 𝑧))
2019eleq1d 2685 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑦 + 𝑧) ∈ 𝑆))
2118, 20imbi12d 334 . . . . . . . 8 (𝑥 = 𝑦 → (((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆)))
2221cbvralv 3169 . . . . . . 7 (∀𝑥𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ∀𝑦𝑋 ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆))
2322ralbii 2979 . . . . . 6 (∀𝑧𝑋𝑥𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ∀𝑧𝑋𝑦𝑋 ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆))
24 oveq1 6654 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧 + 𝑦) = (𝑥 + 𝑦))
2524eleq1d 2685 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑧 + 𝑦) ∈ 𝑆 ↔ (𝑥 + 𝑦) ∈ 𝑆))
26 oveq2 6655 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑦 + 𝑧) = (𝑦 + 𝑥))
2726eleq1d 2685 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))
2825, 27imbi12d 334 . . . . . . . 8 (𝑧 = 𝑥 → (((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆) ↔ ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
2928ralbidv 2985 . . . . . . 7 (𝑧 = 𝑥 → (∀𝑦𝑋 ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆) ↔ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
3029cbvralv 3169 . . . . . 6 (∀𝑧𝑋𝑦𝑋 ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
3116, 23, 303bitri 286 . . . . 5 (∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
3215, 31anbi12i 733 . . . 4 ((∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)) ↔ (∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
33 anidm 676 . . . 4 ((∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
348, 32, 333bitri 286 . . 3 (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
3534anbi2i 730 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆)) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
363, 35bitri 264 1 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1482  wcel 1989  wral 2911  cfv 5886  (class class class)co 6647  Basecbs 15851  +gcplusg 15935  SubGrpcsubg 17582  NrmSGrpcnsg 17583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fv 5894  df-ov 6650  df-subg 17585  df-nsg 17586
This theorem is referenced by:  isnsg3  17622  tgpconncomp  21910
  Copyright terms: Public domain W3C validator