Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrm3 Structured version   Visualization version   GIF version

Theorem isnrm3 21365
 Description: A topological space is normal iff any two disjoint closed sets are separated by open sets. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
isnrm3 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
Distinct variable groups:   𝑥,𝑦   𝑐,𝑑,𝑥,𝑦,𝐽

Proof of Theorem isnrm3
StepHypRef Expression
1 nrmtop 21342 . . 3 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
2 nrmsep 21363 . . . . . 6 ((𝐽 ∈ Nrm ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽) ∧ (𝑐𝑑) = ∅)) → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))
323exp2 1448 . . . . 5 (𝐽 ∈ Nrm → (𝑐 ∈ (Clsd‘𝐽) → (𝑑 ∈ (Clsd‘𝐽) → ((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)))))
43impd 446 . . . 4 (𝐽 ∈ Nrm → ((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽)) → ((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
54ralrimivv 3108 . . 3 (𝐽 ∈ Nrm → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)))
61, 5jca 555 . 2 (𝐽 ∈ Nrm → (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
7 simpl 474 . . 3 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))) → 𝐽 ∈ Top)
8 simpr1 1234 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑐𝑥)
9 simpr2 1236 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑑𝑦)
10 sslin 3982 . . . . . . . . . . . . 13 (𝑑𝑦 → (((cls‘𝐽)‘𝑥) ∩ 𝑑) ⊆ (((cls‘𝐽)‘𝑥) ∩ 𝑦))
119, 10syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (((cls‘𝐽)‘𝑥) ∩ 𝑑) ⊆ (((cls‘𝐽)‘𝑥) ∩ 𝑦))
12 simplll 815 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝐽 ∈ Top)
13 simplr 809 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑦𝐽)
14 eqid 2760 . . . . . . . . . . . . . . 15 𝐽 = 𝐽
1514opncld 21039 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
1612, 13, 15syl2anc 696 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
17 simpr3 1238 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (𝑥𝑦) = ∅)
18 simpllr 817 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑥𝐽)
19 elssuni 4619 . . . . . . . . . . . . . . 15 (𝑥𝐽𝑥 𝐽)
20 reldisj 4163 . . . . . . . . . . . . . . 15 (𝑥 𝐽 → ((𝑥𝑦) = ∅ ↔ 𝑥 ⊆ ( 𝐽𝑦)))
2118, 19, 203syl 18 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ((𝑥𝑦) = ∅ ↔ 𝑥 ⊆ ( 𝐽𝑦)))
2217, 21mpbid 222 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑥 ⊆ ( 𝐽𝑦))
2314clsss2 21078 . . . . . . . . . . . . . 14 ((( 𝐽𝑦) ∈ (Clsd‘𝐽) ∧ 𝑥 ⊆ ( 𝐽𝑦)) → ((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝑦))
24 ssdifin0 4194 . . . . . . . . . . . . . 14 (((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝑦) → (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅)
2523, 24syl 17 . . . . . . . . . . . . 13 ((( 𝐽𝑦) ∈ (Clsd‘𝐽) ∧ 𝑥 ⊆ ( 𝐽𝑦)) → (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅)
2616, 22, 25syl2anc 696 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅)
27 sseq0 4118 . . . . . . . . . . . 12 (((((cls‘𝐽)‘𝑥) ∩ 𝑑) ⊆ (((cls‘𝐽)‘𝑥) ∩ 𝑦) ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅) → (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)
2811, 26, 27syl2anc 696 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)
298, 28jca 555 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))
3029ex 449 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) → ((𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅) → (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))
3130rexlimdva 3169 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (∃𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅) → (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))
3231reximdva 3155 . . . . . . 7 (𝐽 ∈ Top → (∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅) → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))
3332imim2d 57 . . . . . 6 (𝐽 ∈ Top → (((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
3433ralimdv 3101 . . . . 5 (𝐽 ∈ Top → (∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
3534ralimdv 3101 . . . 4 (𝐽 ∈ Top → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
3635imp 444 . . 3 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))) → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))
37 isnrm2 21364 . . 3 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
387, 36, 37sylanbrc 701 . 2 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))) → 𝐽 ∈ Nrm)
396, 38impbii 199 1 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051   ∖ cdif 3712   ∩ cin 3714   ⊆ wss 3715  ∅c0 4058  ∪ cuni 4588  ‘cfv 6049  Topctop 20900  Clsdccld 21022  clsccl 21024  Nrmcnrm 21316 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-top 20901  df-cld 21025  df-cls 21027  df-nrm 21323 This theorem is referenced by:  metnrm  22866
 Copyright terms: Public domain W3C validator