MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp3 Structured version   Visualization version   GIF version

Theorem isngp3 22628
Description: The property of being a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isngp.n 𝑁 = (norm‘𝐺)
isngp.z = (-g𝐺)
isngp.d 𝐷 = (dist‘𝐺)
isngp2.x 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
isngp3 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝐺,𝑦   𝑥, ,𝑦   𝑥,𝑁,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isngp3
StepHypRef Expression
1 isngp.n . . 3 𝑁 = (norm‘𝐺)
2 isngp.z . . 3 = (-g𝐺)
3 isngp.d . . 3 𝐷 = (dist‘𝐺)
4 isngp2.x . . 3 𝑋 = (Base‘𝐺)
5 eqid 2769 . . 3 (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ↾ (𝑋 × 𝑋))
61, 2, 3, 4, 5isngp2 22627 . 2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋))))
74, 3msmet2 22491 . . . . . . . . 9 (𝐺 ∈ MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋))
81, 4, 3, 5nmf2 22623 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ)
97, 8sylan2 493 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → 𝑁:𝑋⟶ℝ)
104, 2grpsubf 17708 . . . . . . . . 9 (𝐺 ∈ Grp → :(𝑋 × 𝑋)⟶𝑋)
1110adantr 473 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → :(𝑋 × 𝑋)⟶𝑋)
12 fco 6197 . . . . . . . 8 ((𝑁:𝑋⟶ℝ ∧ :(𝑋 × 𝑋)⟶𝑋) → (𝑁 ):(𝑋 × 𝑋)⟶ℝ)
139, 11, 12syl2anc 693 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → (𝑁 ):(𝑋 × 𝑋)⟶ℝ)
14 ffn 6184 . . . . . . 7 ((𝑁 ):(𝑋 × 𝑋)⟶ℝ → (𝑁 ) Fn (𝑋 × 𝑋))
1513, 14syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → (𝑁 ) Fn (𝑋 × 𝑋))
167adantl 474 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋))
17 metf 22361 . . . . . . 7 ((𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)):(𝑋 × 𝑋)⟶ℝ)
18 ffn 6184 . . . . . . 7 ((𝐷 ↾ (𝑋 × 𝑋)):(𝑋 × 𝑋)⟶ℝ → (𝐷 ↾ (𝑋 × 𝑋)) Fn (𝑋 × 𝑋))
1916, 17, 183syl 18 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → (𝐷 ↾ (𝑋 × 𝑋)) Fn (𝑋 × 𝑋))
20 eqfnov2 6912 . . . . . 6 (((𝑁 ) Fn (𝑋 × 𝑋) ∧ (𝐷 ↾ (𝑋 × 𝑋)) Fn (𝑋 × 𝑋)) → ((𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥(𝑁 )𝑦) = (𝑥(𝐷 ↾ (𝑋 × 𝑋))𝑦)))
2115, 19, 20syl2anc 693 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥(𝑁 )𝑦) = (𝑥(𝐷 ↾ (𝑋 × 𝑋))𝑦)))
22 opelxpi 5287 . . . . . . . . . 10 ((𝑥𝑋𝑦𝑋) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
23 fvco3 6416 . . . . . . . . . 10 (( :(𝑋 × 𝑋)⟶𝑋 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋)) → ((𝑁 )‘⟨𝑥, 𝑦⟩) = (𝑁‘( ‘⟨𝑥, 𝑦⟩)))
2411, 22, 23syl2an 496 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑁 )‘⟨𝑥, 𝑦⟩) = (𝑁‘( ‘⟨𝑥, 𝑦⟩)))
25 df-ov 6794 . . . . . . . . 9 (𝑥(𝑁 )𝑦) = ((𝑁 )‘⟨𝑥, 𝑦⟩)
26 df-ov 6794 . . . . . . . . . 10 (𝑥 𝑦) = ( ‘⟨𝑥, 𝑦⟩)
2726fveq2i 6334 . . . . . . . . 9 (𝑁‘(𝑥 𝑦)) = (𝑁‘( ‘⟨𝑥, 𝑦⟩))
2824, 25, 273eqtr4g 2828 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(𝑁 )𝑦) = (𝑁‘(𝑥 𝑦)))
29 ovres 6945 . . . . . . . . 9 ((𝑥𝑋𝑦𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋))𝑦) = (𝑥𝐷𝑦))
3029adantl 474 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(𝐷 ↾ (𝑋 × 𝑋))𝑦) = (𝑥𝐷𝑦))
3128, 30eqeq12d 2784 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(𝑁 )𝑦) = (𝑥(𝐷 ↾ (𝑋 × 𝑋))𝑦) ↔ (𝑁‘(𝑥 𝑦)) = (𝑥𝐷𝑦)))
32 eqcom 2776 . . . . . . 7 ((𝑁‘(𝑥 𝑦)) = (𝑥𝐷𝑦) ↔ (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦)))
3331, 32syl6bb 276 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(𝑁 )𝑦) = (𝑥(𝐷 ↾ (𝑋 × 𝑋))𝑦) ↔ (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))))
34332ralbidva 3135 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → (∀𝑥𝑋𝑦𝑋 (𝑥(𝑁 )𝑦) = (𝑥(𝐷 ↾ (𝑋 × 𝑋))𝑦) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))))
3521, 34bitrd 268 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))))
3635pm5.32i 669 . . 3 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋))) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))))
37 df-3an 1071 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋))) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋))))
38 df-3an 1071 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))))
3936, 37, 383bitr4i 292 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋))) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))))
406, 39bitri 264 1 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1069   = wceq 1629  wcel 2143  wral 3059  cop 4319   × cxp 5246  cres 5250  ccom 5252   Fn wfn 6025  wf 6026  cfv 6030  (class class class)co 6791  cr 10135  Basecbs 16070  distcds 16164  Grpcgrp 17636  -gcsg 17638  Metcme 19953  MetSpcmt 22349  normcnm 22607  NrmGrpcngp 22608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-rep 4901  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1070  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-nel 3045  df-ral 3064  df-rex 3065  df-reu 3066  df-rmo 3067  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-pss 3736  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4572  df-iun 4653  df-br 4784  df-opab 4844  df-mpt 4861  df-tr 4884  df-id 5156  df-eprel 5161  df-po 5169  df-so 5170  df-fr 5207  df-we 5209  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-er 7894  df-map 8009  df-en 8108  df-dom 8109  df-sdom 8110  df-sup 8502  df-inf 8503  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-n0 11493  df-z 11578  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-0g 16316  df-topgen 16318  df-mgm 17456  df-sgrp 17498  df-mnd 17509  df-grp 17639  df-minusg 17640  df-sbg 17641  df-psmet 19959  df-xmet 19960  df-met 19961  df-bl 19962  df-mopn 19963  df-top 20925  df-topon 20942  df-topsp 20964  df-bases 20977  df-xms 22351  df-ms 22352  df-nm 22613  df-ngp 22614
This theorem is referenced by:  isngp4  22642  subgngp  22665
  Copyright terms: Public domain W3C validator