MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp2 Structured version   Visualization version   GIF version

Theorem isngp2 22448
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
isngp.n 𝑁 = (norm‘𝐺)
isngp.z = (-g𝐺)
isngp.d 𝐷 = (dist‘𝐺)
isngp2.x 𝑋 = (Base‘𝐺)
isngp2.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
isngp2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸))

Proof of Theorem isngp2
StepHypRef Expression
1 isngp.n . . 3 𝑁 = (norm‘𝐺)
2 isngp.z . . 3 = (-g𝐺)
3 isngp.d . . 3 𝐷 = (dist‘𝐺)
41, 2, 3isngp 22447 . 2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷))
5 isngp2.e . . . . . . 7 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
6 resss 5457 . . . . . . 7 (𝐷 ↾ (𝑋 × 𝑋)) ⊆ 𝐷
75, 6eqsstri 3668 . . . . . 6 𝐸𝐷
8 sseq1 3659 . . . . . 6 ((𝑁 ) = 𝐸 → ((𝑁 ) ⊆ 𝐷𝐸𝐷))
97, 8mpbiri 248 . . . . 5 ((𝑁 ) = 𝐸 → (𝑁 ) ⊆ 𝐷)
10 isngp2.x . . . . . . . . . . . . 13 𝑋 = (Base‘𝐺)
113reseq1i 5424 . . . . . . . . . . . . . 14 (𝐷 ↾ (𝑋 × 𝑋)) = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
125, 11eqtri 2673 . . . . . . . . . . . . 13 𝐸 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
1310, 12msmet 22309 . . . . . . . . . . . 12 (𝐺 ∈ MetSp → 𝐸 ∈ (Met‘𝑋))
141, 10, 3, 5nmf2 22444 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ)
1513, 14sylan2 490 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → 𝑁:𝑋⟶ℝ)
1615adantr 480 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → 𝑁:𝑋⟶ℝ)
1710, 2grpsubf 17541 . . . . . . . . . . 11 (𝐺 ∈ Grp → :(𝑋 × 𝑋)⟶𝑋)
1817ad2antrr 762 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → :(𝑋 × 𝑋)⟶𝑋)
19 fco 6096 . . . . . . . . . 10 ((𝑁:𝑋⟶ℝ ∧ :(𝑋 × 𝑋)⟶𝑋) → (𝑁 ):(𝑋 × 𝑋)⟶ℝ)
2016, 18, 19syl2anc 694 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ):(𝑋 × 𝑋)⟶ℝ)
21 fdm 6089 . . . . . . . . 9 ((𝑁 ):(𝑋 × 𝑋)⟶ℝ → dom (𝑁 ) = (𝑋 × 𝑋))
2220, 21syl 17 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → dom (𝑁 ) = (𝑋 × 𝑋))
2322reseq2d 5428 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝐸 ↾ dom (𝑁 )) = (𝐸 ↾ (𝑋 × 𝑋)))
2410, 12msf 22310 . . . . . . . . . 10 (𝐺 ∈ MetSp → 𝐸:(𝑋 × 𝑋)⟶ℝ)
2524ad2antlr 763 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → 𝐸:(𝑋 × 𝑋)⟶ℝ)
26 ffun 6086 . . . . . . . . 9 (𝐸:(𝑋 × 𝑋)⟶ℝ → Fun 𝐸)
2725, 26syl 17 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → Fun 𝐸)
28 simpr 476 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ 𝐷)
29 ssv 3658 . . . . . . . . . . . 12 ℝ ⊆ V
30 fss 6094 . . . . . . . . . . . 12 (((𝑁 ):(𝑋 × 𝑋)⟶ℝ ∧ ℝ ⊆ V) → (𝑁 ):(𝑋 × 𝑋)⟶V)
3120, 29, 30sylancl 695 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ):(𝑋 × 𝑋)⟶V)
32 fssxp 6098 . . . . . . . . . . 11 ((𝑁 ):(𝑋 × 𝑋)⟶V → (𝑁 ) ⊆ ((𝑋 × 𝑋) × V))
3331, 32syl 17 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ ((𝑋 × 𝑋) × V))
3428, 33ssind 3870 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ (𝐷 ∩ ((𝑋 × 𝑋) × V)))
35 df-res 5155 . . . . . . . . . 10 (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ∩ ((𝑋 × 𝑋) × V))
365, 35eqtri 2673 . . . . . . . . 9 𝐸 = (𝐷 ∩ ((𝑋 × 𝑋) × V))
3734, 36syl6sseqr 3685 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ 𝐸)
38 funssres 5968 . . . . . . . 8 ((Fun 𝐸 ∧ (𝑁 ) ⊆ 𝐸) → (𝐸 ↾ dom (𝑁 )) = (𝑁 ))
3927, 37, 38syl2anc 694 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝐸 ↾ dom (𝑁 )) = (𝑁 ))
40 ffn 6083 . . . . . . . 8 (𝐸:(𝑋 × 𝑋)⟶ℝ → 𝐸 Fn (𝑋 × 𝑋))
41 fnresdm 6038 . . . . . . . 8 (𝐸 Fn (𝑋 × 𝑋) → (𝐸 ↾ (𝑋 × 𝑋)) = 𝐸)
4225, 40, 413syl 18 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝐸 ↾ (𝑋 × 𝑋)) = 𝐸)
4323, 39, 423eqtr3d 2693 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) = 𝐸)
4443ex 449 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ) ⊆ 𝐷 → (𝑁 ) = 𝐸))
459, 44impbid2 216 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ) = 𝐸 ↔ (𝑁 ) ⊆ 𝐷))
4645pm5.32i 670 . . 3 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) = 𝐸) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
47 df-3an 1056 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) = 𝐸))
48 df-3an 1056 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
4946, 47, 483bitr4i 292 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷))
504, 49bitr4i 267 1 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  Vcvv 3231  cin 3606  wss 3607   × cxp 5141  dom cdm 5143  cres 5145  ccom 5147  Fun wfun 5920   Fn wfn 5921  wf 5922  cfv 5926  cr 9973  Basecbs 15904  distcds 15997  Grpcgrp 17469  -gcsg 17471  Metcme 19780  MetSpcmt 22170  normcnm 22428  NrmGrpcngp 22429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-0g 16149  df-topgen 16151  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-xms 22172  df-ms 22173  df-nm 22434  df-ngp 22435
This theorem is referenced by:  isngp3  22449  ngpds  22455  ngppropd  22488  nrmtngdist  22508  nrmtngnrm  22509
  Copyright terms: Public domain W3C validator