MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnghm Structured version   Visualization version   GIF version

Theorem isnghm 22753
Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypothesis
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
Assertion
Ref Expression
isnghm (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))

Proof of Theorem isnghm
StepHypRef Expression
1 nmofval.1 . . . 4 𝑁 = (𝑆 normOp 𝑇)
21nghmfval 22752 . . 3 (𝑆 NGHom 𝑇) = (𝑁 “ ℝ)
32eleq2i 2840 . 2 (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ 𝐹 ∈ (𝑁 “ ℝ))
4 n0i 4065 . . . 4 (𝐹 ∈ (𝑁 “ ℝ) → ¬ (𝑁 “ ℝ) = ∅)
5 nmoffn 22741 . . . . . . . . . . 11 normOp Fn (NrmGrp × NrmGrp)
6 fndm 6129 . . . . . . . . . . 11 ( normOp Fn (NrmGrp × NrmGrp) → dom normOp = (NrmGrp × NrmGrp))
75, 6ax-mp 5 . . . . . . . . . 10 dom normOp = (NrmGrp × NrmGrp)
87ndmov 6963 . . . . . . . . 9 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 normOp 𝑇) = ∅)
91, 8syl5eq 2815 . . . . . . . 8 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅)
109cnveqd 5435 . . . . . . 7 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅)
11 cnv0 5675 . . . . . . 7 ∅ = ∅
1210, 11syl6eq 2819 . . . . . 6 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅)
1312imaeq1d 5605 . . . . 5 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁 “ ℝ) = (∅ “ ℝ))
14 0ima 5622 . . . . 5 (∅ “ ℝ) = ∅
1513, 14syl6eq 2819 . . . 4 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁 “ ℝ) = ∅)
164, 15nsyl2 144 . . 3 (𝐹 ∈ (𝑁 “ ℝ) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp))
171nmof 22749 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*)
18 ffn 6184 . . . 4 (𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*𝑁 Fn (𝑆 GrpHom 𝑇))
19 elpreima 6479 . . . 4 (𝑁 Fn (𝑆 GrpHom 𝑇) → (𝐹 ∈ (𝑁 “ ℝ) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))
2017, 18, 193syl 18 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝐹 ∈ (𝑁 “ ℝ) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))
2116, 20biadan2 674 . 2 (𝐹 ∈ (𝑁 “ ℝ) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))
223, 21bitri 264 1 (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 383   = wceq 1629  wcel 2143  c0 4060   × cxp 5246  ccnv 5247  dom cdm 5248  cima 5251   Fn wfn 6025  wf 6026  cfv 6030  (class class class)co 6791  cr 10135  *cxr 10273   GrpHom cghm 17871  NrmGrpcngp 22608   normOp cnmo 22735   NGHom cnghm 22736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1070  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-nel 3045  df-ral 3064  df-rex 3065  df-reu 3066  df-rmo 3067  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4572  df-iun 4653  df-br 4784  df-opab 4844  df-mpt 4861  df-id 5156  df-po 5169  df-so 5170  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-1st 7313  df-2nd 7314  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-sup 8502  df-inf 8503  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-ico 12385  df-nmo 22738  df-nghm 22739
This theorem is referenced by:  isnghm2  22754  nghmcl  22757  nmoi  22758  nghmrcl1  22762  nghmrcl2  22763  nghmghm  22764  isnmhm2  22782
  Copyright terms: Public domain W3C validator