Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnacs3 Structured version   Visualization version   GIF version

Theorem isnacs3 37590
 Description: A choice-free order equivalent to the Noetherian condition on a closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
isnacs3 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)))
Distinct variable groups:   𝐶,𝑠   𝑋,𝑠

Proof of Theorem isnacs3
Dummy variables 𝑔 𝑖 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nacsacs 37589 . . . 4 (𝐶 ∈ (NoeACS‘𝑋) → 𝐶 ∈ (ACS‘𝑋))
21acsmred 16364 . . 3 (𝐶 ∈ (NoeACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))
3 simpll 805 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝐶 ∈ (NoeACS‘𝑋))
41ad2antrr 762 . . . . . . . . 9 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝐶 ∈ (ACS‘𝑋))
5 elpwi 4201 . . . . . . . . . 10 (𝑠 ∈ 𝒫 𝐶𝑠𝐶)
65ad2antlr 763 . . . . . . . . 9 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝐶)
7 simpr 476 . . . . . . . . 9 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (toInc‘𝑠) ∈ Dirset)
8 acsdrsel 17214 . . . . . . . . 9 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠𝐶 ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝐶)
94, 6, 7, 8syl3anc 1366 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝐶)
10 eqid 2651 . . . . . . . . 9 (mrCls‘𝐶) = (mrCls‘𝐶)
1110nacsfg 37585 . . . . . . . 8 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔))
123, 9, 11syl2anc 694 . . . . . . 7 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔))
1310mrefg2 37587 . . . . . . . . 9 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔)))
142, 13syl 17 . . . . . . . 8 (𝐶 ∈ (NoeACS‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔)))
1514ad2antrr 762 . . . . . . 7 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔)))
1612, 15mpbid 222 . . . . . 6 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔))
17 elfpw 8309 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝑠 ∩ Fin) ↔ (𝑔 𝑠𝑔 ∈ Fin))
18 fissuni 8312 . . . . . . . . 9 ((𝑔 𝑠𝑔 ∈ Fin) → ∃ ∈ (𝒫 𝑠 ∩ Fin)𝑔 )
1917, 18sylbi 207 . . . . . . . 8 (𝑔 ∈ (𝒫 𝑠 ∩ Fin) → ∃ ∈ (𝒫 𝑠 ∩ Fin)𝑔 )
20 elfpw 8309 . . . . . . . . . . . 12 ( ∈ (𝒫 𝑠 ∩ Fin) ↔ (𝑠 ∈ Fin))
21 ipodrsfi 17210 . . . . . . . . . . . . 13 (((toInc‘𝑠) ∈ Dirset ∧ 𝑠 ∈ Fin) → ∃𝑖𝑠 𝑖)
22213expb 1285 . . . . . . . . . . . 12 (((toInc‘𝑠) ∈ Dirset ∧ (𝑠 ∈ Fin)) → ∃𝑖𝑠 𝑖)
2320, 22sylan2b 491 . . . . . . . . . . 11 (((toInc‘𝑠) ∈ Dirset ∧ ∈ (𝒫 𝑠 ∩ Fin)) → ∃𝑖𝑠 𝑖)
24 sstr 3644 . . . . . . . . . . . . . . 15 ((𝑔 𝑖) → 𝑔𝑖)
2524ancoms 468 . . . . . . . . . . . . . 14 (( 𝑖𝑔 ) → 𝑔𝑖)
26 simpr 476 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑠 = ((mrCls‘𝐶)‘𝑔))
272ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝐶 ∈ (Moore‘𝑋))
28 simprr 811 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝑔𝑖)
295ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝑠𝐶)
30 simprl 809 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝑖𝑠)
3129, 30sseldd 3637 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝑖𝐶)
3210mrcsscl 16327 . . . . . . . . . . . . . . . . . . . . 21 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔𝑖𝑖𝐶) → ((mrCls‘𝐶)‘𝑔) ⊆ 𝑖)
3327, 28, 31, 32syl3anc 1366 . . . . . . . . . . . . . . . . . . . 20 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → ((mrCls‘𝐶)‘𝑔) ⊆ 𝑖)
3433adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → ((mrCls‘𝐶)‘𝑔) ⊆ 𝑖)
3526, 34eqsstrd 3672 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑠𝑖)
36 simplrl 817 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑖𝑠)
37 elssuni 4499 . . . . . . . . . . . . . . . . . . 19 (𝑖𝑠𝑖 𝑠)
3836, 37syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑖 𝑠)
3935, 38eqssd 3653 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑠 = 𝑖)
4039, 36eqeltrd 2730 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑠𝑠)
4140ex 449 . . . . . . . . . . . . . . 15 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))
4241expr 642 . . . . . . . . . . . . . 14 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ 𝑖𝑠) → (𝑔𝑖 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠)))
4325, 42syl5 34 . . . . . . . . . . . . 13 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ 𝑖𝑠) → (( 𝑖𝑔 ) → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠)))
4443expd 451 . . . . . . . . . . . 12 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ 𝑖𝑠) → ( 𝑖 → (𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))))
4544rexlimdva 3060 . . . . . . . . . . 11 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → (∃𝑖𝑠 𝑖 → (𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))))
4623, 45syl5 34 . . . . . . . . . 10 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → (((toInc‘𝑠) ∈ Dirset ∧ ∈ (𝒫 𝑠 ∩ Fin)) → (𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))))
4746expdimp 452 . . . . . . . . 9 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ( ∈ (𝒫 𝑠 ∩ Fin) → (𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))))
4847rexlimdv 3059 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (∃ ∈ (𝒫 𝑠 ∩ Fin)𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠)))
4919, 48syl5 34 . . . . . . 7 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (𝑔 ∈ (𝒫 𝑠 ∩ Fin) → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠)))
5049rexlimdv 3059 . . . . . 6 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))
5116, 50mpd 15 . . . . 5 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝑠)
5251ex 449 . . . 4 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → ((toInc‘𝑠) ∈ Dirset → 𝑠𝑠))
5352ralrimiva 2995 . . 3 (𝐶 ∈ (NoeACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠))
542, 53jca 553 . 2 (𝐶 ∈ (NoeACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)))
55 simpl 472 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → 𝐶 ∈ (Moore‘𝑋))
565adantl 481 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠𝐶)
5756sseld 3635 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → ( 𝑠𝑠 𝑠𝐶))
5857imim2d 57 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → (((toInc‘𝑠) ∈ Dirset → 𝑠𝑠) → ((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
5958ralimdva 2991 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → (∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
6059imp 444 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
61 isacs3 17221 . . . 4 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
6255, 60, 61sylanbrc 699 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → 𝐶 ∈ (ACS‘𝑋))
6310mrcid 16320 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → ((mrCls‘𝐶)‘𝑡) = 𝑡)
6463adantlr 751 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((mrCls‘𝐶)‘𝑡) = 𝑡)
6562adantr 480 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → 𝐶 ∈ (ACS‘𝑋))
66 mress 16300 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → 𝑡𝑋)
6766adantlr 751 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → 𝑡𝑋)
6865, 10, 67acsficld 17222 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((mrCls‘𝐶)‘𝑡) = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
6964, 68eqtr3d 2687 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → 𝑡 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
7010mrcf 16316 . . . . . . . . . . . . 13 (𝐶 ∈ (Moore‘𝑋) → (mrCls‘𝐶):𝒫 𝑋𝐶)
71 ffn 6083 . . . . . . . . . . . . 13 ((mrCls‘𝐶):𝒫 𝑋𝐶 → (mrCls‘𝐶) Fn 𝒫 𝑋)
7270, 71syl 17 . . . . . . . . . . . 12 (𝐶 ∈ (Moore‘𝑋) → (mrCls‘𝐶) Fn 𝒫 𝑋)
7372adantr 480 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (mrCls‘𝐶) Fn 𝒫 𝑋)
7410mrcss 16323 . . . . . . . . . . . . 13 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔𝑋) → ((mrCls‘𝐶)‘𝑔) ⊆ ((mrCls‘𝐶)‘))
75743expb 1285 . . . . . . . . . . . 12 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑔𝑋)) → ((mrCls‘𝐶)‘𝑔) ⊆ ((mrCls‘𝐶)‘))
7675adantlr 751 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) ∧ (𝑔𝑋)) → ((mrCls‘𝐶)‘𝑔) ⊆ ((mrCls‘𝐶)‘))
77 vex 3234 . . . . . . . . . . . 12 𝑡 ∈ V
78 fpwipodrs 17211 . . . . . . . . . . . 12 (𝑡 ∈ V → (toInc‘(𝒫 𝑡 ∩ Fin)) ∈ Dirset)
7977, 78mp1i 13 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (toInc‘(𝒫 𝑡 ∩ Fin)) ∈ Dirset)
80 inss1 3866 . . . . . . . . . . . 12 (𝒫 𝑡 ∩ Fin) ⊆ 𝒫 𝑡
81 sspwb 4947 . . . . . . . . . . . . 13 (𝑡𝑋 ↔ 𝒫 𝑡 ⊆ 𝒫 𝑋)
8266, 81sylib 208 . . . . . . . . . . . 12 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → 𝒫 𝑡 ⊆ 𝒫 𝑋)
8380, 82syl5ss 3647 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (𝒫 𝑡 ∩ Fin) ⊆ 𝒫 𝑋)
84 fvex 6239 . . . . . . . . . . . . 13 (mrCls‘𝐶) ∈ V
85 imaexg 7145 . . . . . . . . . . . . 13 ((mrCls‘𝐶) ∈ V → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ V)
8684, 85ax-mp 5 . . . . . . . . . . . 12 ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ V
8786a1i 11 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ V)
8873, 76, 79, 83, 87ipodrsima 17212 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset)
8988adantlr 751 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset)
90 imassrn 5512 . . . . . . . . . . . . . 14 ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ⊆ ran (mrCls‘𝐶)
91 frn 6091 . . . . . . . . . . . . . . 15 ((mrCls‘𝐶):𝒫 𝑋𝐶 → ran (mrCls‘𝐶) ⊆ 𝐶)
9270, 91syl 17 . . . . . . . . . . . . . 14 (𝐶 ∈ (Moore‘𝑋) → ran (mrCls‘𝐶) ⊆ 𝐶)
9390, 92syl5ss 3647 . . . . . . . . . . . . 13 (𝐶 ∈ (Moore‘𝑋) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝐶)
9493adantr 480 . . . . . . . . . . . 12 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝐶)
9586elpw 4197 . . . . . . . . . . . 12 (((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ 𝒫 𝐶 ↔ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝐶)
9694, 95sylibr 224 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ 𝒫 𝐶)
9796adantlr 751 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ 𝒫 𝐶)
98 simplr 807 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠))
99 fveq2 6229 . . . . . . . . . . . . 13 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → (toInc‘𝑠) = (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))))
10099eleq1d 2715 . . . . . . . . . . . 12 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → ((toInc‘𝑠) ∈ Dirset ↔ (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset))
101 unieq 4476 . . . . . . . . . . . . 13 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → 𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
102 id 22 . . . . . . . . . . . . 13 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → 𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
103101, 102eleq12d 2724 . . . . . . . . . . . 12 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → ( 𝑠𝑠 ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))))
104100, 103imbi12d 333 . . . . . . . . . . 11 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → (((toInc‘𝑠) ∈ Dirset → 𝑠𝑠) ↔ ((toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))))
105104rspcva 3338 . . . . . . . . . 10 ((((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → ((toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))))
10697, 98, 105syl2anc 694 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))))
10789, 106mpd 15 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
10869, 107eqeltrd 2730 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → 𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
109 fvelimab 6292 . . . . . . . . 9 (((mrCls‘𝐶) Fn 𝒫 𝑋 ∧ (𝒫 𝑡 ∩ Fin) ⊆ 𝒫 𝑋) → (𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡))
11073, 83, 109syl2anc 694 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡))
111110adantlr 751 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → (𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡))
112108, 111mpbid 222 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡)
113 eqcom 2658 . . . . . . 7 (𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ((mrCls‘𝐶)‘𝑔) = 𝑡)
114113rexbii 3070 . . . . . 6 (∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡)
115112, 114sylibr 224 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔))
11610mrefg2 37587 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔)))
117116ad2antrr 762 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔)))
118115, 117mpbird 247 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔))
119118ralrimiva 2995 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → ∀𝑡𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔))
12010isnacs 37584 . . 3 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑡𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔)))
12162, 119, 120sylanbrc 699 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → 𝐶 ∈ (NoeACS‘𝑋))
12254, 121impbii 199 1 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942  Vcvv 3231   ∩ cin 3606   ⊆ wss 3607  𝒫 cpw 4191  ∪ cuni 4468  ran crn 5144   “ cima 5146   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  Fincfn 7997  Moorecmre 16289  mrClscmrc 16290  ACScacs 16292  Dirsetcdrs 16974  toInccipo 17198  NoeACScnacs 37582 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-tset 16007  df-ple 16008  df-ocomp 16010  df-mre 16293  df-mrc 16294  df-acs 16296  df-preset 16975  df-drs 16976  df-poset 16993  df-ipo 17199  df-nacs 37583 This theorem is referenced by:  nacsfix  37592
 Copyright terms: Public domain W3C validator