![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismri2dad | Structured version Visualization version GIF version |
Description: Consequence of a set in a Moore system being independent. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ismri2dad.1 | ⊢ 𝑁 = (mrCls‘𝐴) |
ismri2dad.2 | ⊢ 𝐼 = (mrInd‘𝐴) |
ismri2dad.3 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
ismri2dad.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
ismri2dad.5 | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
Ref | Expression |
---|---|
ismri2dad | ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismri2dad.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
2 | ismri2dad.1 | . . . 4 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | ismri2dad.2 | . . . 4 ⊢ 𝐼 = (mrInd‘𝐴) | |
4 | ismri2dad.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
5 | 3, 4, 1 | mrissd 16343 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
6 | 2, 3, 4, 5 | ismri2d 16340 | . . 3 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
7 | 1, 6 | mpbid 222 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) |
8 | ismri2dad.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
9 | simpr 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → 𝑥 = 𝑌) | |
10 | 9 | sneqd 4222 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → {𝑥} = {𝑌}) |
11 | 10 | difeq2d 3761 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑆 ∖ {𝑥}) = (𝑆 ∖ {𝑌})) |
12 | 11 | fveq2d 6233 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑁‘(𝑆 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑌}))) |
13 | 9, 12 | eleq12d 2724 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))) |
14 | 13 | notbid 307 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))) |
15 | 8, 14 | rspcdv 3343 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))) |
16 | 7, 15 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ∖ cdif 3604 {csn 4210 ‘cfv 5926 Moorecmre 16289 mrClscmrc 16290 mrIndcmri 16291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fv 5934 df-mre 16293 df-mri 16295 |
This theorem is referenced by: mrieqv2d 16346 mreexmrid 16350 mreexexlem2d 16352 acsfiindd 17224 |
Copyright terms: Public domain | W3C validator |