![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismri | Structured version Visualization version GIF version |
Description: Criterion for a set to be an independent set of a Moore system. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ismri.1 | ⊢ 𝑁 = (mrCls‘𝐴) |
ismri.2 | ⊢ 𝐼 = (mrInd‘𝐴) |
Ref | Expression |
---|---|
ismri | ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismri.1 | . . . . 5 ⊢ 𝑁 = (mrCls‘𝐴) | |
2 | ismri.2 | . . . . 5 ⊢ 𝐼 = (mrInd‘𝐴) | |
3 | 1, 2 | mrisval 16498 | . . . 4 ⊢ (𝐴 ∈ (Moore‘𝑋) → 𝐼 = {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))}) |
4 | 3 | eleq2d 2836 | . . 3 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ 𝑆 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})) |
5 | difeq1 3872 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → (𝑠 ∖ {𝑥}) = (𝑆 ∖ {𝑥})) | |
6 | 5 | fveq2d 6337 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑁‘(𝑠 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑥}))) |
7 | 6 | eleq2d 2836 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
8 | 7 | notbid 307 | . . . . 5 ⊢ (𝑠 = 𝑆 → (¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
9 | 8 | raleqbi1dv 3295 | . . . 4 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
10 | 9 | elrab 3515 | . . 3 ⊢ (𝑆 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))} ↔ (𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
11 | 4, 10 | syl6bb 276 | . 2 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ (𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
12 | elfvex 6364 | . . . 4 ⊢ (𝐴 ∈ (Moore‘𝑋) → 𝑋 ∈ V) | |
13 | elpw2g 4959 | . . . 4 ⊢ (𝑋 ∈ V → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
15 | 14 | anbi1d 615 | . 2 ⊢ (𝐴 ∈ (Moore‘𝑋) → ((𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
16 | 11, 15 | bitrd 268 | 1 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 {crab 3065 Vcvv 3351 ∖ cdif 3720 ⊆ wss 3723 𝒫 cpw 4298 {csn 4317 ‘cfv 6030 Moorecmre 16450 mrClscmrc 16451 mrIndcmri 16452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-iota 5993 df-fun 6032 df-fv 6038 df-mre 16454 df-mri 16456 |
This theorem is referenced by: ismri2 16500 mriss 16503 lbsacsbs 19371 |
Copyright terms: Public domain | W3C validator |