![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismon1p | Structured version Visualization version GIF version |
Description: Being a monic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
uc1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
uc1pval.b | ⊢ 𝐵 = (Base‘𝑃) |
uc1pval.z | ⊢ 0 = (0g‘𝑃) |
uc1pval.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
mon1pval.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
mon1pval.o | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ismon1p | ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3005 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ≠ 0 ↔ 𝐹 ≠ 0 )) | |
2 | fveq2 6332 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (coe1‘𝑓) = (coe1‘𝐹)) | |
3 | fveq2 6332 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝐷‘𝑓) = (𝐷‘𝐹)) | |
4 | 2, 3 | fveq12d 6338 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((coe1‘𝑓)‘(𝐷‘𝑓)) = ((coe1‘𝐹)‘(𝐷‘𝐹))) |
5 | 4 | eqeq1d 2773 | . . . 4 ⊢ (𝑓 = 𝐹 → (((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 ↔ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
6 | 1, 5 | anbi12d 616 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 ) ↔ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ))) |
7 | uc1pval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
8 | uc1pval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
9 | uc1pval.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
10 | uc1pval.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
11 | mon1pval.m | . . . 4 ⊢ 𝑀 = (Monic1p‘𝑅) | |
12 | mon1pval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
13 | 7, 8, 9, 10, 11, 12 | mon1pval 24121 | . . 3 ⊢ 𝑀 = {𝑓 ∈ 𝐵 ∣ (𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 )} |
14 | 6, 13 | elrab2 3518 | . 2 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ))) |
15 | 3anass 1080 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ) ↔ (𝐹 ∈ 𝐵 ∧ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ))) | |
16 | 14, 15 | bitr4i 267 | 1 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ‘cfv 6031 Basecbs 16064 0gc0g 16308 1rcur 18709 Poly1cpl1 19762 coe1cco1 19763 deg1 cdg1 24034 Monic1pcmn1 24105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-slot 16068 df-base 16070 df-mon1 24110 |
This theorem is referenced by: mon1pcl 24124 mon1pn0 24126 mon1pldg 24129 uc1pmon1p 24131 ply1remlem 24142 mon1pid 38309 mon1psubm 38310 |
Copyright terms: Public domain | W3C validator |