MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismon Structured version   Visualization version   GIF version

Theorem ismon 16599
Description: Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐵 = (Base‘𝐶)
ismon.h 𝐻 = (Hom ‘𝐶)
ismon.o · = (comp‘𝐶)
ismon.s 𝑀 = (Mono‘𝐶)
ismon.c (𝜑𝐶 ∈ Cat)
ismon.x (𝜑𝑋𝐵)
ismon.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ismon (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)))))
Distinct variable groups:   𝑧,𝑔,𝐵   𝜑,𝑔,𝑧   𝐶,𝑔,𝑧   𝑔,𝐻,𝑧   · ,𝑔,𝑧   𝑔,𝐹,𝑧   𝑔,𝑋,𝑧   𝑔,𝑌,𝑧
Allowed substitution hints:   𝑀(𝑧,𝑔)

Proof of Theorem ismon
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismon.b . . . . 5 𝐵 = (Base‘𝐶)
2 ismon.h . . . . 5 𝐻 = (Hom ‘𝐶)
3 ismon.o . . . . 5 · = (comp‘𝐶)
4 ismon.s . . . . 5 𝑀 = (Mono‘𝐶)
5 ismon.c . . . . 5 (𝜑𝐶 ∈ Cat)
61, 2, 3, 4, 5monfval 16598 . . . 4 (𝜑𝑀 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
7 simprl 746 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
8 simprr 748 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
97, 8oveq12d 6810 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
107oveq2d 6808 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑧𝐻𝑥) = (𝑧𝐻𝑋))
117opeq2d 4544 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ⟨𝑧, 𝑥⟩ = ⟨𝑧, 𝑋⟩)
1211, 8oveq12d 6810 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (⟨𝑧, 𝑥· 𝑦) = (⟨𝑧, 𝑋· 𝑌))
1312oveqd 6809 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔) = (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))
1410, 13mpteq12dv 4865 . . . . . . . 8 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)))
1514cnveqd 5436 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)))
1615funeqd 6053 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔)) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))))
1716ralbidv 3134 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔)) ↔ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))))
189, 17rabeqbidv 3344 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))} = {𝑓 ∈ (𝑋𝐻𝑌) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))})
19 ismon.x . . . 4 (𝜑𝑋𝐵)
20 ismon.y . . . 4 (𝜑𝑌𝐵)
21 ovex 6822 . . . . . 6 (𝑋𝐻𝑌) ∈ V
2221rabex 4943 . . . . 5 {𝑓 ∈ (𝑋𝐻𝑌) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))} ∈ V
2322a1i 11 . . . 4 (𝜑 → {𝑓 ∈ (𝑋𝐻𝑌) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))} ∈ V)
246, 18, 19, 20, 23ovmpt2d 6934 . . 3 (𝜑 → (𝑋𝑀𝑌) = {𝑓 ∈ (𝑋𝐻𝑌) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))})
2524eleq2d 2835 . 2 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ 𝐹 ∈ {𝑓 ∈ (𝑋𝐻𝑌) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))}))
26 oveq1 6799 . . . . . . 7 (𝑓 = 𝐹 → (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))
2726mpteq2dv 4877 . . . . . 6 (𝑓 = 𝐹 → (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)))
2827cnveqd 5436 . . . . 5 (𝑓 = 𝐹(𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)))
2928funeqd 6053 . . . 4 (𝑓 = 𝐹 → (Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
3029ralbidv 3134 . . 3 (𝑓 = 𝐹 → (∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
3130elrab 3513 . 2 (𝐹 ∈ {𝑓 ∈ (𝑋𝐻𝑌) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))} ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
3225, 31syl6bb 276 1 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wral 3060  {crab 3064  Vcvv 3349  cop 4320  cmpt 4861  ccnv 5248  Fun wfun 6025  cfv 6031  (class class class)co 6792  Basecbs 16063  Hom chom 16159  compcco 16160  Catccat 16531  Monocmon 16594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-mon 16596
This theorem is referenced by:  ismon2  16600  monhom  16601  isepi  16606
  Copyright terms: Public domain W3C validator