Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismndo2 Structured version   Visualization version   GIF version

Theorem ismndo2 34005
Description: The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ismndo2.1 𝑋 = ran 𝐺
Assertion
Ref Expression
ismndo2 (𝐺𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
Distinct variable groups:   𝑥,𝐺,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem ismndo2
StepHypRef Expression
1 ismndo2.1 . . . 4 𝑋 = ran 𝐺
2 mndomgmid 34002 . . . . 5 (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId ))
3 rngopidOLD 33984 . . . . 5 (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺)
42, 3syl 17 . . . 4 (𝐺 ∈ MndOp → ran 𝐺 = dom dom 𝐺)
51, 4syl5eq 2807 . . 3 (𝐺 ∈ MndOp → 𝑋 = dom dom 𝐺)
65a1i 11 . 2 (𝐺𝐴 → (𝐺 ∈ MndOp → 𝑋 = dom dom 𝐺))
7 fdm 6213 . . . . . 6 (𝐺:(𝑋 × 𝑋)⟶𝑋 → dom 𝐺 = (𝑋 × 𝑋))
87dmeqd 5482 . . . . 5 (𝐺:(𝑋 × 𝑋)⟶𝑋 → dom dom 𝐺 = dom (𝑋 × 𝑋))
9 dmxpid 5501 . . . . 5 dom (𝑋 × 𝑋) = 𝑋
108, 9syl6req 2812 . . . 4 (𝐺:(𝑋 × 𝑋)⟶𝑋𝑋 = dom dom 𝐺)
11103ad2ant1 1128 . . 3 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)) → 𝑋 = dom dom 𝐺)
1211a1i 11 . 2 (𝐺𝐴 → ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)) → 𝑋 = dom dom 𝐺))
13 eqid 2761 . . . 4 dom dom 𝐺 = dom dom 𝐺
1413ismndo1 34004 . . 3 (𝐺𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺 ∧ ∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
15 xpid11 5503 . . . . . . 7 ((𝑋 × 𝑋) = (dom dom 𝐺 × dom dom 𝐺) ↔ 𝑋 = dom dom 𝐺)
1615biimpri 218 . . . . . 6 (𝑋 = dom dom 𝐺 → (𝑋 × 𝑋) = (dom dom 𝐺 × dom dom 𝐺))
17 feq23 6191 . . . . . 6 (((𝑋 × 𝑋) = (dom dom 𝐺 × dom dom 𝐺) ∧ 𝑋 = dom dom 𝐺) → (𝐺:(𝑋 × 𝑋)⟶𝑋𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺))
1816, 17mpancom 706 . . . . 5 (𝑋 = dom dom 𝐺 → (𝐺:(𝑋 × 𝑋)⟶𝑋𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺))
19 raleq 3278 . . . . . . 7 (𝑋 = dom dom 𝐺 → (∀𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
2019raleqbi1dv 3286 . . . . . 6 (𝑋 = dom dom 𝐺 → (∀𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
2120raleqbi1dv 3286 . . . . 5 (𝑋 = dom dom 𝐺 → (∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
22 raleq 3278 . . . . . 6 (𝑋 = dom dom 𝐺 → (∀𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ↔ ∀𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
2322rexeqbi1dv 3287 . . . . 5 (𝑋 = dom dom 𝐺 → (∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ↔ ∃𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
2418, 21, 233anbi123d 1548 . . . 4 (𝑋 = dom dom 𝐺 → ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)) ↔ (𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺 ∧ ∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
2524bibi2d 331 . . 3 (𝑋 = dom dom 𝐺 → ((𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) ↔ (𝐺 ∈ MndOp ↔ (𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺 ∧ ∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))))
2614, 25syl5ibrcom 237 . 2 (𝐺𝐴 → (𝑋 = dom dom 𝐺 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))))
276, 12, 26pm5.21ndd 368 1 (𝐺𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140  wral 3051  wrex 3052  cin 3715   × cxp 5265  dom cdm 5267  ran crn 5268  wf 6046  (class class class)co 6815   ExId cexid 33975  Magmacmagm 33979  MndOpcmndo 33997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-fo 6056  df-fv 6058  df-ov 6818  df-ass 33974  df-exid 33976  df-mgmOLD 33980  df-sgrOLD 33992  df-mndo 33998
This theorem is referenced by:  grpomndo  34006
  Copyright terms: Public domain W3C validator