![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismbl | Structured version Visualization version GIF version |
Description: The predicate "𝐴 is Lebesgue-measurable". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥 ∩ 𝐴 and 𝑥 ∖ 𝐴 sum up to the measure of 𝑥 (assuming that the measure of 𝑥 is a real number, so that this addition makes sense). (Contributed by Mario Carneiro, 17-Mar-2014.) |
Ref | Expression |
---|---|
ismbl | ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq2 3841 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 ∩ 𝑦) = (𝑥 ∩ 𝐴)) | |
2 | 1 | fveq2d 6233 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (vol*‘(𝑥 ∩ 𝑦)) = (vol*‘(𝑥 ∩ 𝐴))) |
3 | difeq2 3755 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 ∖ 𝑦) = (𝑥 ∖ 𝐴)) | |
4 | 3 | fveq2d 6233 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (vol*‘(𝑥 ∖ 𝑦)) = (vol*‘(𝑥 ∖ 𝐴))) |
5 | 2, 4 | oveq12d 6708 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦))) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) |
6 | 5 | eqeq2d 2661 | . . . 4 ⊢ (𝑦 = 𝐴 → ((vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦))) ↔ (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
7 | 6 | ralbidv 3015 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦))) ↔ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
8 | df-vol 23280 | . . . . . 6 ⊢ vol = (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))}) | |
9 | 8 | dmeqi 5357 | . . . . 5 ⊢ dom vol = dom (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))}) |
10 | dmres 5454 | . . . . 5 ⊢ dom (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))}) = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ dom vol*) | |
11 | ovolf 23296 | . . . . . . 7 ⊢ vol*:𝒫 ℝ⟶(0[,]+∞) | |
12 | 11 | fdmi 6090 | . . . . . 6 ⊢ dom vol* = 𝒫 ℝ |
13 | 12 | ineq2i 3844 | . . . . 5 ⊢ ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ dom vol*) = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ 𝒫 ℝ) |
14 | 9, 10, 13 | 3eqtri 2677 | . . . 4 ⊢ dom vol = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ 𝒫 ℝ) |
15 | dfrab2 3936 | . . . 4 ⊢ {𝑦 ∈ 𝒫 ℝ ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ 𝒫 ℝ) | |
16 | 14, 15 | eqtr4i 2676 | . . 3 ⊢ dom vol = {𝑦 ∈ 𝒫 ℝ ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} |
17 | 7, 16 | elrab2 3399 | . 2 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ∈ 𝒫 ℝ ∧ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
18 | reex 10065 | . . . 4 ⊢ ℝ ∈ V | |
19 | 18 | elpw2 4858 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ) |
20 | ffn 6083 | . . . . . . 7 ⊢ (vol*:𝒫 ℝ⟶(0[,]+∞) → vol* Fn 𝒫 ℝ) | |
21 | elpreima 6377 | . . . . . . 7 ⊢ (vol* Fn 𝒫 ℝ → (𝑥 ∈ (◡vol* “ ℝ) ↔ (𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ))) | |
22 | 11, 20, 21 | mp2b 10 | . . . . . 6 ⊢ (𝑥 ∈ (◡vol* “ ℝ) ↔ (𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ)) |
23 | 22 | imbi1i 338 | . . . . 5 ⊢ ((𝑥 ∈ (◡vol* “ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
24 | impexp 461 | . . . . 5 ⊢ (((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) | |
25 | 23, 24 | bitri 264 | . . . 4 ⊢ ((𝑥 ∈ (◡vol* “ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
26 | 25 | ralbii2 3007 | . . 3 ⊢ (∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ↔ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
27 | 19, 26 | anbi12i 733 | . 2 ⊢ ((𝐴 ∈ 𝒫 ℝ ∧ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
28 | 17, 27 | bitri 264 | 1 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {cab 2637 ∀wral 2941 {crab 2945 ∖ cdif 3604 ∩ cin 3606 ⊆ wss 3607 𝒫 cpw 4191 ◡ccnv 5142 dom cdm 5143 ↾ cres 5145 “ cima 5146 Fn wfn 5921 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ℝcr 9973 0cc0 9974 + caddc 9977 +∞cpnf 10109 [,]cicc 12216 vol*covol 23277 volcvol 23278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-inf 8390 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-ico 12219 df-icc 12220 df-fz 12365 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-ovol 23279 df-vol 23280 |
This theorem is referenced by: ismbl2 23341 mblss 23345 mblsplit 23346 cmmbl 23348 shftmbl 23352 voliunlem2 23365 |
Copyright terms: Public domain | W3C validator |