![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismbfm | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a measurable function from the measurable space 𝑆 to the measurable space 𝑇". Cf. ismbf 23616. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
Ref | Expression |
---|---|
ismbfm.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
ismbfm.2 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
Ref | Expression |
---|---|
ismbfm | ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismbfm.1 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
2 | ismbfm.2 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) | |
3 | unieq 4583 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ∪ 𝑠 = ∪ 𝑆) | |
4 | 3 | oveq2d 6812 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (∪ 𝑡 ↑𝑚 ∪ 𝑠) = (∪ 𝑡 ↑𝑚 ∪ 𝑆)) |
5 | eleq2 2839 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ((◡𝑓 “ 𝑥) ∈ 𝑠 ↔ (◡𝑓 “ 𝑥) ∈ 𝑆)) | |
6 | 5 | ralbidv 3135 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠 ↔ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆)) |
7 | 4, 6 | rabeqbidv 3345 | . . . . 5 ⊢ (𝑠 = 𝑆 → {𝑓 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠} = {𝑓 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
8 | unieq 4583 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → ∪ 𝑡 = ∪ 𝑇) | |
9 | 8 | oveq1d 6811 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (∪ 𝑡 ↑𝑚 ∪ 𝑆) = (∪ 𝑇 ↑𝑚 ∪ 𝑆)) |
10 | raleq 3287 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆)) | |
11 | 9, 10 | rabeqbidv 3345 | . . . . 5 ⊢ (𝑡 = 𝑇 → {𝑓 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆} = {𝑓 ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
12 | df-mbfm 30653 | . . . . 5 ⊢ MblFnM = (𝑠 ∈ ∪ ran sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) | |
13 | ovex 6827 | . . . . . 6 ⊢ (∪ 𝑇 ↑𝑚 ∪ 𝑆) ∈ V | |
14 | 13 | rabex 4947 | . . . . 5 ⊢ {𝑓 ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆} ∈ V |
15 | 7, 11, 12, 14 | ovmpt2 6947 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑆MblFnM𝑇) = {𝑓 ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
16 | 1, 2, 15 | syl2anc 573 | . . 3 ⊢ (𝜑 → (𝑆MblFnM𝑇) = {𝑓 ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
17 | 16 | eleq2d 2836 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆})) |
18 | cnveq 5433 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
19 | 18 | imaeq1d 5605 | . . . . 5 ⊢ (𝑓 = 𝐹 → (◡𝑓 “ 𝑥) = (◡𝐹 “ 𝑥)) |
20 | 19 | eleq1d 2835 | . . . 4 ⊢ (𝑓 = 𝐹 → ((◡𝑓 “ 𝑥) ∈ 𝑆 ↔ (◡𝐹 “ 𝑥) ∈ 𝑆)) |
21 | 20 | ralbidv 3135 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
22 | 21 | elrab 3515 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆} ↔ (𝐹 ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
23 | 17, 22 | syl6bb 276 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 {crab 3065 ∪ cuni 4575 ◡ccnv 5249 ran crn 5251 “ cima 5253 (class class class)co 6796 ↑𝑚 cmap 8013 sigAlgebracsiga 30510 MblFnMcmbfm 30652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-mbfm 30653 |
This theorem is referenced by: elunirnmbfm 30655 mbfmf 30657 isanmbfm 30658 mbfmcnvima 30659 mbfmcst 30661 1stmbfm 30662 2ndmbfm 30663 imambfm 30664 mbfmco 30666 elmbfmvol2 30669 mbfmcnt 30670 sibfof 30742 isrrvv 30845 |
Copyright terms: Public domain | W3C validator |