MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf3d Structured version   Visualization version   GIF version

Theorem ismbf3d 23466
Description: Simplified form of ismbfd 23452. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
ismbf3d.1 (𝜑𝐹:𝐴⟶ℝ)
ismbf3d.2 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
Assertion
Ref Expression
ismbf3d (𝜑𝐹 ∈ MblFn)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem ismbf3d
Dummy variables 𝑣 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismbf3d.1 . 2 (𝜑𝐹:𝐴⟶ℝ)
2 fimacnv 6387 . . . 4 (𝐹:𝐴⟶ℝ → (𝐹 “ ℝ) = 𝐴)
31, 2syl 17 . . 3 (𝜑 → (𝐹 “ ℝ) = 𝐴)
4 imaiun 6543 . . . . 5 (𝐹 𝑦 ∈ ℕ (-𝑦(,)+∞)) = 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞))
5 ioossre 12273 . . . . . . . . 9 (-𝑦(,)+∞) ⊆ ℝ
65rgenw 2953 . . . . . . . 8 𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ
7 iunss 4593 . . . . . . . 8 ( 𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ ↔ ∀𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ)
86, 7mpbir 221 . . . . . . 7 𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ
9 renegcl 10382 . . . . . . . . . . 11 (𝑧 ∈ ℝ → -𝑧 ∈ ℝ)
10 arch 11327 . . . . . . . . . . 11 (-𝑧 ∈ ℝ → ∃𝑦 ∈ ℕ -𝑧 < 𝑦)
119, 10syl 17 . . . . . . . . . 10 (𝑧 ∈ ℝ → ∃𝑦 ∈ ℕ -𝑧 < 𝑦)
12 simpl 472 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → 𝑧 ∈ ℝ)
1312biantrurd 528 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (-𝑦 < 𝑧 ↔ (𝑧 ∈ ℝ ∧ -𝑦 < 𝑧)))
14 nnre 11065 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
15 ltnegcon1 10567 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑧 < 𝑦 ↔ -𝑦 < 𝑧))
1614, 15sylan2 490 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (-𝑧 < 𝑦 ↔ -𝑦 < 𝑧))
1714adantl 481 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
1817renegcld 10495 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → -𝑦 ∈ ℝ)
1918rexrd 10127 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → -𝑦 ∈ ℝ*)
20 elioopnf 12305 . . . . . . . . . . . . 13 (-𝑦 ∈ ℝ* → (𝑧 ∈ (-𝑦(,)+∞) ↔ (𝑧 ∈ ℝ ∧ -𝑦 < 𝑧)))
2119, 20syl 17 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ (-𝑦(,)+∞) ↔ (𝑧 ∈ ℝ ∧ -𝑦 < 𝑧)))
2213, 16, 213bitr4d 300 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (-𝑧 < 𝑦𝑧 ∈ (-𝑦(,)+∞)))
2322rexbidva 3078 . . . . . . . . . 10 (𝑧 ∈ ℝ → (∃𝑦 ∈ ℕ -𝑧 < 𝑦 ↔ ∃𝑦 ∈ ℕ 𝑧 ∈ (-𝑦(,)+∞)))
2411, 23mpbid 222 . . . . . . . . 9 (𝑧 ∈ ℝ → ∃𝑦 ∈ ℕ 𝑧 ∈ (-𝑦(,)+∞))
25 eliun 4556 . . . . . . . . 9 (𝑧 𝑦 ∈ ℕ (-𝑦(,)+∞) ↔ ∃𝑦 ∈ ℕ 𝑧 ∈ (-𝑦(,)+∞))
2624, 25sylibr 224 . . . . . . . 8 (𝑧 ∈ ℝ → 𝑧 𝑦 ∈ ℕ (-𝑦(,)+∞))
2726ssriv 3640 . . . . . . 7 ℝ ⊆ 𝑦 ∈ ℕ (-𝑦(,)+∞)
288, 27eqssi 3652 . . . . . 6 𝑦 ∈ ℕ (-𝑦(,)+∞) = ℝ
2928imaeq2i 5499 . . . . 5 (𝐹 𝑦 ∈ ℕ (-𝑦(,)+∞)) = (𝐹 “ ℝ)
304, 29eqtr3i 2675 . . . 4 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) = (𝐹 “ ℝ)
31 ismbf3d.2 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
3231ralrimiva 2995 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℝ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
3314renegcld 10495 . . . . . . 7 (𝑦 ∈ ℕ → -𝑦 ∈ ℝ)
34 oveq1 6697 . . . . . . . . . 10 (𝑥 = -𝑦 → (𝑥(,)+∞) = (-𝑦(,)+∞))
3534imaeq2d 5501 . . . . . . . . 9 (𝑥 = -𝑦 → (𝐹 “ (𝑥(,)+∞)) = (𝐹 “ (-𝑦(,)+∞)))
3635eleq1d 2715 . . . . . . . 8 (𝑥 = -𝑦 → ((𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol))
3736rspccva 3339 . . . . . . 7 ((∀𝑥 ∈ ℝ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol ∧ -𝑦 ∈ ℝ) → (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
3832, 33, 37syl2an 493 . . . . . 6 ((𝜑𝑦 ∈ ℕ) → (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
3938ralrimiva 2995 . . . . 5 (𝜑 → ∀𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
40 iunmbl 23367 . . . . 5 (∀𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol → 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
4139, 40syl 17 . . . 4 (𝜑 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
4230, 41syl5eqelr 2735 . . 3 (𝜑 → (𝐹 “ ℝ) ∈ dom vol)
433, 42eqeltrrd 2731 . 2 (𝜑𝐴 ∈ dom vol)
44 imaiun 6543 . . . . . . 7 (𝐹 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦)))) = 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦))))
45 eliun 4556 . . . . . . . . . 10 (𝑥 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦))) ↔ ∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))))
46 3simpb 1079 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 ≤ (𝑧 − (1 / 𝑦))))
47 simplr 807 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → 𝑧 ∈ ℝ)
48 nnrp 11880 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
4948ad2antrl 764 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → 𝑦 ∈ ℝ+)
5049rpreccld 11920 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (1 / 𝑦) ∈ ℝ+)
5147, 50ltsubrpd 11942 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (𝑧 − (1 / 𝑦)) < 𝑧)
52 simprr 811 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → 𝑥 ∈ ℝ)
53 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
54 nnrecre 11095 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → (1 / 𝑦) ∈ ℝ)
55 resubcl 10383 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ ∧ (1 / 𝑦) ∈ ℝ) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
5653, 54, 55syl2an 493 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
5756adantrr 753 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
58 lelttr 10166 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 ≤ (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < 𝑧) → 𝑥 < 𝑧))
5952, 57, 47, 58syl3anc 1366 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → ((𝑥 ≤ (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < 𝑧) → 𝑥 < 𝑧))
6051, 59mpan2d 710 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (𝑥 ≤ (𝑧 − (1 / 𝑦)) → 𝑥 < 𝑧))
6160anassrs 681 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 ≤ (𝑧 − (1 / 𝑦)) → 𝑥 < 𝑧))
6261imdistanda 729 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝑥 ∈ ℝ ∧ 𝑥 ≤ (𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
6346, 62syl5 34 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
64 mnfxr 10134 . . . . . . . . . . . . . . . 16 -∞ ∈ ℝ*
65 elioc2 12274 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦)))))
6664, 56, 65sylancr 696 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦)))))
67 rexr 10123 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℝ → 𝑧 ∈ ℝ*)
6867adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ*)
69 elioomnf 12306 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝑧) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
7068, 69syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝑧) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
7170adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ (-∞(,)𝑧) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
7263, 66, 713imtr4d 283 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) → 𝑥 ∈ (-∞(,)𝑧)))
7372rexlimdva 3060 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) → 𝑥 ∈ (-∞(,)𝑧)))
7473, 70sylibd 229 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
75 simprl 809 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 𝑥 ∈ ℝ)
7675adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 ∈ ℝ)
77 mnflt 11995 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → -∞ < 𝑥)
7876, 77syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → -∞ < 𝑥)
7956ad2ant2r 798 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
8054ad2antrl 764 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (1 / 𝑦) ∈ ℝ)
81 simplr 807 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 𝑧 ∈ ℝ)
8281adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑧 ∈ ℝ)
83 simprr 811 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (1 / 𝑦) < (𝑧𝑥))
8480, 82, 76, 83ltsub13d 10671 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 < (𝑧 − (1 / 𝑦)))
8576, 79, 84ltled 10223 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 ≤ (𝑧 − (1 / 𝑦)))
8666ad2ant2r 798 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦)))))
8776, 78, 85, 86mpbir3and 1264 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))))
8881, 75resubcld 10496 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → (𝑧𝑥) ∈ ℝ)
89 simprr 811 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 𝑥 < 𝑧)
9075, 81posdifd 10652 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → (𝑥 < 𝑧 ↔ 0 < (𝑧𝑥)))
9189, 90mpbid 222 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 0 < (𝑧𝑥))
92 nnrecl 11328 . . . . . . . . . . . . . . 15 (((𝑧𝑥) ∈ ℝ ∧ 0 < (𝑧𝑥)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝑧𝑥))
9388, 91, 92syl2anc 694 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝑧𝑥))
9487, 93reximddv 3047 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → ∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))))
9594ex 449 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ 𝑥 < 𝑧) → ∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦)))))
9674, 95impbid 202 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
9796, 70bitr4d 271 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ 𝑥 ∈ (-∞(,)𝑧)))
9845, 97syl5bb 272 . . . . . . . . 9 ((𝜑𝑧 ∈ ℝ) → (𝑥 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦))) ↔ 𝑥 ∈ (-∞(,)𝑧)))
9998eqrdv 2649 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦))) = (-∞(,)𝑧))
10099imaeq2d 5501 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → (𝐹 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦)))) = (𝐹 “ (-∞(,)𝑧)))
10144, 100syl5eqr 2699 . . . . . 6 ((𝜑𝑧 ∈ ℝ) → 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) = (𝐹 “ (-∞(,)𝑧)))
1021ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → 𝐹:𝐴⟶ℝ)
103 ffun 6086 . . . . . . . . . . 11 (𝐹:𝐴⟶ℝ → Fun 𝐹)
104 funcnvcnv 5994 . . . . . . . . . . 11 (Fun 𝐹 → Fun 𝐹)
105 imadif 6011 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞))) = ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))))
106102, 103, 104, 1054syl 19 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞))) = ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))))
10764a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → -∞ ∈ ℝ*)
10856rexrd 10127 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 − (1 / 𝑦)) ∈ ℝ*)
109 pnfxr 10130 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
110109a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → +∞ ∈ ℝ*)
111 mnflt 11995 . . . . . . . . . . . . . . 15 ((𝑧 − (1 / 𝑦)) ∈ ℝ → -∞ < (𝑧 − (1 / 𝑦)))
11256, 111syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → -∞ < (𝑧 − (1 / 𝑦)))
113 ltpnf 11992 . . . . . . . . . . . . . . 15 ((𝑧 − (1 / 𝑦)) ∈ ℝ → (𝑧 − (1 / 𝑦)) < +∞)
11456, 113syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 − (1 / 𝑦)) < +∞)
115 df-ioc 12218 . . . . . . . . . . . . . . 15 (,] = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤𝑣)})
116 df-ioo 12217 . . . . . . . . . . . . . . 15 (,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤 < 𝑣)})
117 xrltnle 10143 . . . . . . . . . . . . . . 15 (((𝑧 − (1 / 𝑦)) ∈ ℝ*𝑥 ∈ ℝ*) → ((𝑧 − (1 / 𝑦)) < 𝑥 ↔ ¬ 𝑥 ≤ (𝑧 − (1 / 𝑦))))
118 xrlelttr 12025 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑥 ≤ (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < +∞) → 𝑥 < +∞))
119 xrlttr 12011 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ*𝑥 ∈ ℝ*) → ((-∞ < (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < 𝑥) → -∞ < 𝑥))
120115, 116, 117, 116, 118, 119ixxun 12229 . . . . . . . . . . . . . 14 (((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < +∞)) → ((-∞(,](𝑧 − (1 / 𝑦))) ∪ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,)+∞))
121107, 108, 110, 112, 114, 120syl32anc 1374 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((-∞(,](𝑧 − (1 / 𝑦))) ∪ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,)+∞))
122 uncom 3790 . . . . . . . . . . . . 13 ((-∞(,](𝑧 − (1 / 𝑦))) ∪ ((𝑧 − (1 / 𝑦))(,)+∞)) = (((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦))))
123 ioomax 12286 . . . . . . . . . . . . 13 (-∞(,)+∞) = ℝ
124121, 122, 1233eqtr3g 2708 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) = ℝ)
125 ioossre 12273 . . . . . . . . . . . . 13 ((𝑧 − (1 / 𝑦))(,)+∞) ⊆ ℝ
126 incom 3838 . . . . . . . . . . . . . 14 (((𝑧 − (1 / 𝑦))(,)+∞) ∩ (-∞(,](𝑧 − (1 / 𝑦)))) = ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞))
127115, 116, 117ixxdisj 12228 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) = ∅)
12864, 109, 127mp3an13 1455 . . . . . . . . . . . . . . 15 ((𝑧 − (1 / 𝑦)) ∈ ℝ* → ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) = ∅)
129108, 128syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) = ∅)
130126, 129syl5eq 2697 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (((𝑧 − (1 / 𝑦))(,)+∞) ∩ (-∞(,](𝑧 − (1 / 𝑦)))) = ∅)
131 uneqdifeq 4090 . . . . . . . . . . . . 13 ((((𝑧 − (1 / 𝑦))(,)+∞) ⊆ ℝ ∧ (((𝑧 − (1 / 𝑦))(,)+∞) ∩ (-∞(,](𝑧 − (1 / 𝑦)))) = ∅) → ((((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) = ℝ ↔ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,](𝑧 − (1 / 𝑦)))))
132125, 130, 131sylancr 696 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) = ℝ ↔ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,](𝑧 − (1 / 𝑦)))))
133124, 132mpbid 222 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,](𝑧 − (1 / 𝑦))))
134133imaeq2d 5501 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞))) = (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))))
135106, 134eqtr3d 2687 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) = (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))))
13642ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ ℝ) ∈ dom vol)
13732ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ∀𝑥 ∈ ℝ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
138 oveq1 6697 . . . . . . . . . . . . . 14 (𝑥 = (𝑧 − (1 / 𝑦)) → (𝑥(,)+∞) = ((𝑧 − (1 / 𝑦))(,)+∞))
139138imaeq2d 5501 . . . . . . . . . . . . 13 (𝑥 = (𝑧 − (1 / 𝑦)) → (𝐹 “ (𝑥(,)+∞)) = (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)))
140139eleq1d 2715 . . . . . . . . . . . 12 (𝑥 = (𝑧 − (1 / 𝑦)) → ((𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom vol))
141140rspcv 3336 . . . . . . . . . . 11 ((𝑧 − (1 / 𝑦)) ∈ ℝ → (∀𝑥 ∈ ℝ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol → (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom vol))
14256, 137, 141sylc 65 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom vol)
143 difmbl 23357 . . . . . . . . . 10 (((𝐹 “ ℝ) ∈ dom vol ∧ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom vol) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) ∈ dom vol)
144136, 142, 143syl2anc 694 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) ∈ dom vol)
145135, 144eqeltrrd 2731 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
146145ralrimiva 2995 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → ∀𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
147 iunmbl 23367 . . . . . . 7 (∀𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol → 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
148146, 147syl 17 . . . . . 6 ((𝜑𝑧 ∈ ℝ) → 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
149101, 148eqeltrrd 2731 . . . . 5 ((𝜑𝑧 ∈ ℝ) → (𝐹 “ (-∞(,)𝑧)) ∈ dom vol)
150149ralrimiva 2995 . . . 4 (𝜑 → ∀𝑧 ∈ ℝ (𝐹 “ (-∞(,)𝑧)) ∈ dom vol)
151 oveq2 6698 . . . . . . 7 (𝑧 = 𝑥 → (-∞(,)𝑧) = (-∞(,)𝑥))
152151imaeq2d 5501 . . . . . 6 (𝑧 = 𝑥 → (𝐹 “ (-∞(,)𝑧)) = (𝐹 “ (-∞(,)𝑥)))
153152eleq1d 2715 . . . . 5 (𝑧 = 𝑥 → ((𝐹 “ (-∞(,)𝑧)) ∈ dom vol ↔ (𝐹 “ (-∞(,)𝑥)) ∈ dom vol))
154153cbvralv 3201 . . . 4 (∀𝑧 ∈ ℝ (𝐹 “ (-∞(,)𝑧)) ∈ dom vol ↔ ∀𝑥 ∈ ℝ (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
155150, 154sylib 208 . . 3 (𝜑 → ∀𝑥 ∈ ℝ (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
156155r19.21bi 2961 . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
1571, 43, 31, 156ismbf2d 23453 1 (𝜑𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  cdif 3604  cun 3605  cin 3606  wss 3607  c0 3948   ciun 4552   class class class wbr 4685  ccnv 5142  dom cdm 5143  cima 5146  Fun wfun 5920  wf 5922  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975  +∞cpnf 10109  -∞cmnf 10110  *cxr 10111   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  cn 11058  +crp 11870  (,)cioo 12213  (,]cioc 12214  volcvol 23278  MblFncmbf 23428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xadd 11985  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-xmet 19787  df-met 19788  df-ovol 23279  df-vol 23280  df-mbf 23433
This theorem is referenced by:  mbfaddlem  23472  mbfsup  23476
  Copyright terms: Public domain W3C validator