![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismaxidl | Structured version Visualization version GIF version |
Description: The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.) |
Ref | Expression |
---|---|
ismaxidl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ismaxidl.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
ismaxidl | ⊢ (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismaxidl.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | ismaxidl.2 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
3 | 1, 2 | maxidlval 33968 | . . 3 ⊢ (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))}) |
4 | 3 | eleq2d 2716 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ 𝑀 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))})) |
5 | neeq1 2885 | . . . . 5 ⊢ (𝑖 = 𝑀 → (𝑖 ≠ 𝑋 ↔ 𝑀 ≠ 𝑋)) | |
6 | sseq1 3659 | . . . . . . 7 ⊢ (𝑖 = 𝑀 → (𝑖 ⊆ 𝑗 ↔ 𝑀 ⊆ 𝑗)) | |
7 | eqeq2 2662 | . . . . . . . 8 ⊢ (𝑖 = 𝑀 → (𝑗 = 𝑖 ↔ 𝑗 = 𝑀)) | |
8 | 7 | orbi1d 739 | . . . . . . 7 ⊢ (𝑖 = 𝑀 → ((𝑗 = 𝑖 ∨ 𝑗 = 𝑋) ↔ (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))) |
9 | 6, 8 | imbi12d 333 | . . . . . 6 ⊢ (𝑖 = 𝑀 → ((𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)) ↔ (𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋)))) |
10 | 9 | ralbidv 3015 | . . . . 5 ⊢ (𝑖 = 𝑀 → (∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)) ↔ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋)))) |
11 | 5, 10 | anbi12d 747 | . . . 4 ⊢ (𝑖 = 𝑀 → ((𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋))) ↔ (𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) |
12 | 11 | elrab 3396 | . . 3 ⊢ (𝑀 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))} ↔ (𝑀 ∈ (Idl‘𝑅) ∧ (𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) |
13 | 3anass 1059 | . . 3 ⊢ ((𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ (𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) | |
14 | 12, 13 | bitr4i 267 | . 2 ⊢ (𝑀 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))} ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋)))) |
15 | 4, 14 | syl6bb 276 | 1 ⊢ (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 {crab 2945 ⊆ wss 3607 ran crn 5144 ‘cfv 5926 1st c1st 7208 RingOpscrngo 33823 Idlcidl 33936 MaxIdlcmaxidl 33938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fv 5934 df-maxidl 33941 |
This theorem is referenced by: maxidlidl 33970 maxidlnr 33971 maxidlmax 33972 |
Copyright terms: Public domain | W3C validator |