 Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismaxidl Structured version   Visualization version   GIF version

Theorem ismaxidl 33969
 Description: The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.)
Hypotheses
Ref Expression
ismaxidl.1 𝐺 = (1st𝑅)
ismaxidl.2 𝑋 = ran 𝐺
Assertion
Ref Expression
ismaxidl (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋)))))
Distinct variable groups:   𝑅,𝑗   𝑗,𝑀
Allowed substitution hints:   𝐺(𝑗)   𝑋(𝑗)

Proof of Theorem ismaxidl
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ismaxidl.1 . . . 4 𝐺 = (1st𝑅)
2 ismaxidl.2 . . . 4 𝑋 = ran 𝐺
31, 2maxidlval 33968 . . 3 (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))})
43eleq2d 2716 . 2 (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ 𝑀 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))}))
5 neeq1 2885 . . . . 5 (𝑖 = 𝑀 → (𝑖𝑋𝑀𝑋))
6 sseq1 3659 . . . . . . 7 (𝑖 = 𝑀 → (𝑖𝑗𝑀𝑗))
7 eqeq2 2662 . . . . . . . 8 (𝑖 = 𝑀 → (𝑗 = 𝑖𝑗 = 𝑀))
87orbi1d 739 . . . . . . 7 (𝑖 = 𝑀 → ((𝑗 = 𝑖𝑗 = 𝑋) ↔ (𝑗 = 𝑀𝑗 = 𝑋)))
96, 8imbi12d 333 . . . . . 6 (𝑖 = 𝑀 → ((𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)) ↔ (𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋))))
109ralbidv 3015 . . . . 5 (𝑖 = 𝑀 → (∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)) ↔ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋))))
115, 10anbi12d 747 . . . 4 (𝑖 = 𝑀 → ((𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋))) ↔ (𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋)))))
1211elrab 3396 . . 3 (𝑀 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))} ↔ (𝑀 ∈ (Idl‘𝑅) ∧ (𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋)))))
13 3anass 1059 . . 3 ((𝑀 ∈ (Idl‘𝑅) ∧ 𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋))) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ (𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋)))))
1412, 13bitr4i 267 . 2 (𝑀 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))} ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋))))
154, 14syl6bb 276 1 (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  {crab 2945   ⊆ wss 3607  ran crn 5144  ‘cfv 5926  1st c1st 7208  RingOpscrngo 33823  Idlcidl 33936  MaxIdlcmaxidl 33938 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-iota 5889  df-fun 5928  df-fv 5934  df-maxidl 33941 This theorem is referenced by:  maxidlidl  33970  maxidlnr  33971  maxidlmax  33972
 Copyright terms: Public domain W3C validator