![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islvec | Structured version Visualization version GIF version |
Description: The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013.) |
Ref | Expression |
---|---|
islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
islvec | ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6304 | . . . 4 ⊢ (𝑓 = 𝑊 → (Scalar‘𝑓) = (Scalar‘𝑊)) | |
2 | islvec.1 | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 1, 2 | syl6eqr 2776 | . . 3 ⊢ (𝑓 = 𝑊 → (Scalar‘𝑓) = 𝐹) |
4 | 3 | eleq1d 2788 | . 2 ⊢ (𝑓 = 𝑊 → ((Scalar‘𝑓) ∈ DivRing ↔ 𝐹 ∈ DivRing)) |
5 | df-lvec 19226 | . 2 ⊢ LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing} | |
6 | 4, 5 | elrab2 3472 | 1 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ‘cfv 6001 Scalarcsca 16067 DivRingcdr 18870 LModclmod 18986 LVecclvec 19225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-rex 3020 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-iota 5964 df-fv 6009 df-lvec 19226 |
This theorem is referenced by: lvecdrng 19228 lveclmod 19229 lsslvec 19230 lvecprop2d 19289 lvecpropd 19290 rlmlvec 19329 frlmphl 20243 tvclvec 22124 isnvc2 22625 iscvs 23048 cnstrcvs 23062 zclmncvs 23069 lindsdom 33635 lindsenlbs 33636 lduallvec 34861 dvalveclem 36733 dvhlveclem 36816 lmod1zrnlvec 42710 aacllem 42977 |
Copyright terms: Public domain | W3C validator |