![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islssfg2 | Structured version Visualization version GIF version |
Description: Property of a finitely generated left (sub-)module, with a relaxed constraint on the spanning vectors. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
islssfg.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
islssfg.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
islssfg.n | ⊢ 𝑁 = (LSpan‘𝑊) |
islssfg2.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
islssfg2 | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑏) = 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islssfg.x | . . 3 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
2 | islssfg.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | islssfg.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | 1, 2, 3 | islssfg 38142 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈))) |
5 | islssfg2.b | . . . . . . . . . . . . 13 ⊢ 𝐵 = (Base‘𝑊) | |
6 | 5, 2 | lssss 19139 | . . . . . . . . . . . 12 ⊢ ((𝑁‘𝑏) ∈ 𝑆 → (𝑁‘𝑏) ⊆ 𝐵) |
7 | 6 | adantl 473 | . . . . . . . . . . 11 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑁‘𝑏) ⊆ 𝐵) |
8 | sstr2 3751 | . . . . . . . . . . 11 ⊢ (𝑏 ⊆ (𝑁‘𝑏) → ((𝑁‘𝑏) ⊆ 𝐵 → 𝑏 ⊆ 𝐵)) | |
9 | 7, 8 | mpan9 487 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) ∧ 𝑏 ⊆ (𝑁‘𝑏)) → 𝑏 ⊆ 𝐵) |
10 | 5, 3 | lspssid 19187 | . . . . . . . . . . 11 ⊢ ((𝑊 ∈ LMod ∧ 𝑏 ⊆ 𝐵) → 𝑏 ⊆ (𝑁‘𝑏)) |
11 | 10 | adantlr 753 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) ∧ 𝑏 ⊆ 𝐵) → 𝑏 ⊆ (𝑁‘𝑏)) |
12 | 9, 11 | impbida 913 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑏 ⊆ (𝑁‘𝑏) ↔ 𝑏 ⊆ 𝐵)) |
13 | vex 3343 | . . . . . . . . . 10 ⊢ 𝑏 ∈ V | |
14 | 13 | elpw 4308 | . . . . . . . . 9 ⊢ (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ⊆ (𝑁‘𝑏)) |
15 | 13 | elpw 4308 | . . . . . . . . 9 ⊢ (𝑏 ∈ 𝒫 𝐵 ↔ 𝑏 ⊆ 𝐵) |
16 | 12, 14, 15 | 3bitr4g 303 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝐵)) |
17 | eleq1 2827 | . . . . . . . . . 10 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑁‘𝑏) ∈ 𝑆 ↔ 𝑈 ∈ 𝑆)) | |
18 | 17 | anbi2d 742 | . . . . . . . . 9 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) ↔ (𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆))) |
19 | pweq 4305 | . . . . . . . . . . 11 ⊢ ((𝑁‘𝑏) = 𝑈 → 𝒫 (𝑁‘𝑏) = 𝒫 𝑈) | |
20 | 19 | eleq2d 2825 | . . . . . . . . . 10 ⊢ ((𝑁‘𝑏) = 𝑈 → (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝑈)) |
21 | 20 | bibi1d 332 | . . . . . . . . 9 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝐵) ↔ (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
22 | 18, 21 | imbi12d 333 | . . . . . . . 8 ⊢ ((𝑁‘𝑏) = 𝑈 → (((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝐵)) ↔ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵)))) |
23 | 16, 22 | mpbii 223 | . . . . . . 7 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
24 | 23 | com12 32 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑁‘𝑏) = 𝑈 → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
25 | 24 | adantld 484 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈) → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
26 | 25 | pm5.32rd 675 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)))) |
27 | elin 3939 | . . . . . 6 ⊢ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin)) | |
28 | 27 | anbi1i 733 | . . . . 5 ⊢ ((𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁‘𝑏) = 𝑈) ↔ ((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝑈)) |
29 | anass 684 | . . . . 5 ⊢ (((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝑈) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈))) | |
30 | 28, 29 | bitr2i 265 | . . . 4 ⊢ ((𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁‘𝑏) = 𝑈)) |
31 | 26, 30 | syl6bb 276 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁‘𝑏) = 𝑈))) |
32 | 31 | rexbidv2 3186 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈) ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑏) = 𝑈)) |
33 | 4, 32 | bitrd 268 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑏) = 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 ∩ cin 3714 ⊆ wss 3715 𝒫 cpw 4302 ‘cfv 6049 (class class class)co 6813 Fincfn 8121 Basecbs 16059 ↾s cress 16060 LModclmod 19065 LSubSpclss 19134 LSpanclspn 19173 LFinGenclfig 38139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-sca 16159 df-vsca 16160 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-grp 17626 df-minusg 17627 df-sbg 17628 df-subg 17792 df-mgp 18690 df-ur 18702 df-ring 18749 df-lmod 19067 df-lss 19135 df-lsp 19174 df-lfig 38140 |
This theorem is referenced by: islssfgi 38144 lsmfgcl 38146 islnm2 38150 lmhmfgima 38156 |
Copyright terms: Public domain | W3C validator |