Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islssfg2 Structured version   Visualization version   GIF version

Theorem islssfg2 38143
Description: Property of a finitely generated left (sub-)module, with a relaxed constraint on the spanning vectors. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
islssfg.x 𝑋 = (𝑊s 𝑈)
islssfg.s 𝑆 = (LSubSp‘𝑊)
islssfg.n 𝑁 = (LSpan‘𝑊)
islssfg2.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
islssfg2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁𝑏) = 𝑈))
Distinct variable groups:   𝑊,𝑏   𝑋,𝑏   𝑆,𝑏   𝑈,𝑏   𝑁,𝑏
Allowed substitution hint:   𝐵(𝑏)

Proof of Theorem islssfg2
StepHypRef Expression
1 islssfg.x . . 3 𝑋 = (𝑊s 𝑈)
2 islssfg.s . . 3 𝑆 = (LSubSp‘𝑊)
3 islssfg.n . . 3 𝑁 = (LSpan‘𝑊)
41, 2, 3islssfg 38142 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)))
5 islssfg2.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑊)
65, 2lssss 19139 . . . . . . . . . . . 12 ((𝑁𝑏) ∈ 𝑆 → (𝑁𝑏) ⊆ 𝐵)
76adantl 473 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑁𝑏) ⊆ 𝐵)
8 sstr2 3751 . . . . . . . . . . 11 (𝑏 ⊆ (𝑁𝑏) → ((𝑁𝑏) ⊆ 𝐵𝑏𝐵))
97, 8mpan9 487 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) ∧ 𝑏 ⊆ (𝑁𝑏)) → 𝑏𝐵)
105, 3lspssid 19187 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑏𝐵) → 𝑏 ⊆ (𝑁𝑏))
1110adantlr 753 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) ∧ 𝑏𝐵) → 𝑏 ⊆ (𝑁𝑏))
129, 11impbida 913 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑏 ⊆ (𝑁𝑏) ↔ 𝑏𝐵))
13 vex 3343 . . . . . . . . . 10 𝑏 ∈ V
1413elpw 4308 . . . . . . . . 9 (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ⊆ (𝑁𝑏))
1513elpw 4308 . . . . . . . . 9 (𝑏 ∈ 𝒫 𝐵𝑏𝐵)
1612, 14, 153bitr4g 303 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝐵))
17 eleq1 2827 . . . . . . . . . 10 ((𝑁𝑏) = 𝑈 → ((𝑁𝑏) ∈ 𝑆𝑈𝑆))
1817anbi2d 742 . . . . . . . . 9 ((𝑁𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) ↔ (𝑊 ∈ LMod ∧ 𝑈𝑆)))
19 pweq 4305 . . . . . . . . . . 11 ((𝑁𝑏) = 𝑈 → 𝒫 (𝑁𝑏) = 𝒫 𝑈)
2019eleq2d 2825 . . . . . . . . . 10 ((𝑁𝑏) = 𝑈 → (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝑈))
2120bibi1d 332 . . . . . . . . 9 ((𝑁𝑏) = 𝑈 → ((𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝐵) ↔ (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2218, 21imbi12d 333 . . . . . . . 8 ((𝑁𝑏) = 𝑈 → (((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝐵)) ↔ ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵))))
2316, 22mpbii 223 . . . . . . 7 ((𝑁𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2423com12 32 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑁𝑏) = 𝑈 → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2524adantld 484 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈) → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2625pm5.32rd 675 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈))))
27 elin 3939 . . . . . 6 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin))
2827anbi1i 733 . . . . 5 ((𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁𝑏) = 𝑈) ↔ ((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝑈))
29 anass 684 . . . . 5 (((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝑈) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)))
3028, 29bitr2i 265 . . . 4 ((𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁𝑏) = 𝑈))
3126, 30syl6bb 276 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁𝑏) = 𝑈)))
3231rexbidv2 3186 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈) ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁𝑏) = 𝑈))
334, 32bitrd 268 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁𝑏) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wrex 3051  cin 3714  wss 3715  𝒫 cpw 4302  cfv 6049  (class class class)co 6813  Fincfn 8121  Basecbs 16059  s cress 16060  LModclmod 19065  LSubSpclss 19134  LSpanclspn 19173  LFinGenclfig 38139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-sca 16159  df-vsca 16160  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-sbg 17628  df-subg 17792  df-mgp 18690  df-ur 18702  df-ring 18749  df-lmod 19067  df-lss 19135  df-lsp 19174  df-lfig 38140
This theorem is referenced by:  islssfgi  38144  lsmfgcl  38146  islnm2  38150  lmhmfgima  38156
  Copyright terms: Public domain W3C validator