Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  islss4 Structured version   Visualization version   GIF version

Theorem islss4 19175
 Description: A linear subspace is a subgroup which respects scalar multiplication. (Contributed by Stefan O'Rear, 11-Dec-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
islss4.f 𝐹 = (Scalar‘𝑊)
islss4.b 𝐵 = (Base‘𝐹)
islss4.v 𝑉 = (Base‘𝑊)
islss4.t · = ( ·𝑠𝑊)
islss4.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
islss4 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)))
Distinct variable groups:   𝐹,𝑎,𝑏   𝑊,𝑎,𝑏   𝐵,𝑎,𝑏   𝑉,𝑎,𝑏   · ,𝑎,𝑏   𝑆,𝑎,𝑏   𝑈,𝑎,𝑏

Proof of Theorem islss4
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 islss4.s . . . 4 𝑆 = (LSubSp‘𝑊)
21lsssubg 19170 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
3 islss4.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 islss4.t . . . . 5 · = ( ·𝑠𝑊)
5 islss4.b . . . . 5 𝐵 = (Base‘𝐹)
63, 4, 5, 1lssvscl 19168 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑎𝐵𝑏𝑈)) → (𝑎 · 𝑏) ∈ 𝑈)
76ralrimivva 3120 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)
82, 7jca 501 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈))
9 islss4.v . . . . 5 𝑉 = (Base‘𝑊)
109subgss 17803 . . . 4 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈𝑉)
1110ad2antrl 707 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈𝑉)
12 eqid 2771 . . . . . 6 (0g𝑊) = (0g𝑊)
1312subg0cl 17810 . . . . 5 (𝑈 ∈ (SubGrp‘𝑊) → (0g𝑊) ∈ 𝑈)
1413ne0d 4070 . . . 4 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ≠ ∅)
1514ad2antrl 707 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈 ≠ ∅)
16 eqid 2771 . . . . . . . . . 10 (+g𝑊) = (+g𝑊)
1716subgcl 17812 . . . . . . . . 9 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑎 · 𝑏) ∈ 𝑈𝑐𝑈) → ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)
18173exp 1112 . . . . . . . 8 (𝑈 ∈ (SubGrp‘𝑊) → ((𝑎 · 𝑏) ∈ 𝑈 → (𝑐𝑈 → ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)))
1918adantl 467 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑎 · 𝑏) ∈ 𝑈 → (𝑐𝑈 → ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)))
2019ralrimdv 3117 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑎 · 𝑏) ∈ 𝑈 → ∀𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2120ralimdv 3112 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (∀𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈 → ∀𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2221ralimdv 3112 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈 → ∀𝑎𝐵𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2322impr 442 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → ∀𝑎𝐵𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)
243, 5, 9, 16, 4, 1islss 19145 . . 3 (𝑈𝑆 ↔ (𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑎𝐵𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2511, 15, 23, 24syl3anbrc 1428 . 2 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈𝑆)
268, 25impbida 802 1 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145   ≠ wne 2943  ∀wral 3061   ⊆ wss 3723  ∅c0 4063  ‘cfv 6030  (class class class)co 6796  Basecbs 16064  +gcplusg 16149  Scalarcsca 16152   ·𝑠 cvsca 16153  0gc0g 16308  SubGrpcsubg 17796  LModclmod 19073  LSubSpclss 19142 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-mgp 18698  df-ur 18710  df-ring 18757  df-lmod 19075  df-lss 19143 This theorem is referenced by:  lssacs  19180  lmhmima  19260  lmhmpreima  19261  lmhmeql  19268  lsmcl  19296  issubassa2  19560  mplind  19717  dsmmlss  20305
 Copyright terms: Public domain W3C validator