![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islshpsm | Structured version Visualization version GIF version |
Description: Hyperplane properties expressed with subspace sum. (Contributed by NM, 3-Jul-2014.) |
Ref | Expression |
---|---|
islshpsm.v | ⊢ 𝑉 = (Base‘𝑊) |
islshpsm.n | ⊢ 𝑁 = (LSpan‘𝑊) |
islshpsm.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
islshpsm.p | ⊢ ⊕ = (LSSum‘𝑊) |
islshpsm.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
islshpsm.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
Ref | Expression |
---|---|
islshpsm | ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islshpsm.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | islshpsm.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
3 | islshpsm.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | islshpsm.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | islshpsm.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
6 | 2, 3, 4, 5 | islshp 34787 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
7 | 1, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
8 | 1 | ad2antrr 764 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → 𝑊 ∈ LMod) |
9 | simplrl 819 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → 𝑈 ∈ 𝑆) | |
10 | 4, 3 | lspid 19204 | . . . . . . . . . . 11 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
11 | 8, 9, 10 | syl2anc 696 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘𝑈) = 𝑈) |
12 | 11 | uneq1d 3909 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → ((𝑁‘𝑈) ∪ (𝑁‘{𝑣})) = (𝑈 ∪ (𝑁‘{𝑣}))) |
13 | 12 | fveq2d 6357 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑣}))) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣})))) |
14 | 2, 4 | lssss 19159 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
15 | 9, 14 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → 𝑈 ⊆ 𝑉) |
16 | snssi 4484 | . . . . . . . . . 10 ⊢ (𝑣 ∈ 𝑉 → {𝑣} ⊆ 𝑉) | |
17 | 16 | adantl 473 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → {𝑣} ⊆ 𝑉) |
18 | 2, 3 | lspun 19209 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ {𝑣} ⊆ 𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑣})))) |
19 | 8, 15, 17, 18 | syl3anc 1477 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑣})))) |
20 | 2, 4, 3 | lspcl 19198 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ LMod ∧ {𝑣} ⊆ 𝑉) → (𝑁‘{𝑣}) ∈ 𝑆) |
21 | 8, 17, 20 | syl2anc 696 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘{𝑣}) ∈ 𝑆) |
22 | islshpsm.p | . . . . . . . . . 10 ⊢ ⊕ = (LSSum‘𝑊) | |
23 | 4, 3, 22 | lsmsp 19308 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ (𝑁‘{𝑣}) ∈ 𝑆) → (𝑈 ⊕ (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣})))) |
24 | 8, 9, 21, 23 | syl3anc 1477 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣})))) |
25 | 13, 19, 24 | 3eqtr4rd 2805 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ {𝑣}))) |
26 | 25 | eqeq1d 2762 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → ((𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
27 | 26 | rexbidva 3187 | . . . . 5 ⊢ ((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) → (∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉 ↔ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
28 | 27 | pm5.32da 676 | . . . 4 ⊢ (𝜑 → (((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
29 | 28 | bicomd 213 | . . 3 ⊢ (𝜑 → (((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
30 | df-3an 1074 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) | |
31 | df-3an 1074 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉)) | |
32 | 29, 30, 31 | 3bitr4g 303 | . 2 ⊢ (𝜑 → ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
33 | 7, 32 | bitrd 268 | 1 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∃wrex 3051 ∪ cun 3713 ⊆ wss 3715 {csn 4321 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 LSSumclsm 18269 LModclmod 19085 LSubSpclss 19154 LSpanclspn 19193 LSHypclsh 34783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-submnd 17557 df-grp 17646 df-minusg 17647 df-sbg 17648 df-subg 17812 df-cntz 17970 df-lsm 18271 df-cmn 18415 df-abl 18416 df-mgp 18710 df-ur 18722 df-ring 18769 df-lmod 19087 df-lss 19155 df-lsp 19194 df-lshyp 34785 |
This theorem is referenced by: lshpnelb 34792 lshpcmp 34796 islshpat 34825 lshpkrex 34926 dochshpncl 37193 |
Copyright terms: Public domain | W3C validator |