Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshpkrN Structured version   Visualization version   GIF version

Theorem islshpkrN 34928
 Description: The predicate "is a hyperplane" (of a left module or left vector space). TODO: should it be 𝑈 = (𝐾‘𝑔) or (𝐾‘𝑔) = 𝑈 as in lshpkrex 34926? Both standards seem to be used randomly throughout set.mm; we should decide on a preferred one. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lshpset2.v 𝑉 = (Base‘𝑊)
lshpset2.d 𝐷 = (Scalar‘𝑊)
lshpset2.z 0 = (0g𝐷)
lshpset2.h 𝐻 = (LSHyp‘𝑊)
lshpset2.f 𝐹 = (LFnl‘𝑊)
lshpset2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
islshpkrN (𝑊 ∈ LVec → (𝑈𝐻 ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
Distinct variable groups:   𝑔,𝐹   𝑔,𝐻   𝑔,𝐾   𝑔,𝑉   𝑔,𝑊   𝑈,𝑔
Allowed substitution hints:   𝐷(𝑔)   0 (𝑔)

Proof of Theorem islshpkrN
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lshpset2.v . . . 4 𝑉 = (Base‘𝑊)
2 lshpset2.d . . . 4 𝐷 = (Scalar‘𝑊)
3 lshpset2.z . . . 4 0 = (0g𝐷)
4 lshpset2.h . . . 4 𝐻 = (LSHyp‘𝑊)
5 lshpset2.f . . . 4 𝐹 = (LFnl‘𝑊)
6 lshpset2.k . . . 4 𝐾 = (LKer‘𝑊)
71, 2, 3, 4, 5, 6lshpset2N 34927 . . 3 (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))})
87eleq2d 2825 . 2 (𝑊 ∈ LVec → (𝑈𝐻𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))}))
9 elex 3352 . . . 4 (𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))} → 𝑈 ∈ V)
109adantl 473 . . 3 ((𝑊 ∈ LVec ∧ 𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))}) → 𝑈 ∈ V)
11 fvex 6363 . . . . . . 7 (𝐾𝑔) ∈ V
12 eleq1 2827 . . . . . . 7 (𝑈 = (𝐾𝑔) → (𝑈 ∈ V ↔ (𝐾𝑔) ∈ V))
1311, 12mpbiri 248 . . . . . 6 (𝑈 = (𝐾𝑔) → 𝑈 ∈ V)
1413adantl 473 . . . . 5 ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔)) → 𝑈 ∈ V)
1514rexlimivw 3167 . . . 4 (∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔)) → 𝑈 ∈ V)
1615adantl 473 . . 3 ((𝑊 ∈ LVec ∧ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))) → 𝑈 ∈ V)
17 eqeq1 2764 . . . . . 6 (𝑠 = 𝑈 → (𝑠 = (𝐾𝑔) ↔ 𝑈 = (𝐾𝑔)))
1817anbi2d 742 . . . . 5 (𝑠 = 𝑈 → ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) ↔ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
1918rexbidv 3190 . . . 4 (𝑠 = 𝑈 → (∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
2019elabg 3491 . . 3 (𝑈 ∈ V → (𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))} ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
2110, 16, 20pm5.21nd 979 . 2 (𝑊 ∈ LVec → (𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))} ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
228, 21bitrd 268 1 (𝑊 ∈ LVec → (𝑈𝐻 ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  {cab 2746   ≠ wne 2932  ∃wrex 3051  Vcvv 3340  {csn 4321   × cxp 5264  ‘cfv 6049  Basecbs 16079  Scalarcsca 16166  0gc0g 16322  LVecclvec 19324  LSHypclsh 34783  LFnlclfn 34865  LKerclk 34893 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-grp 17646  df-minusg 17647  df-sbg 17648  df-subg 17812  df-cntz 17970  df-lsm 18271  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-oppr 18843  df-dvdsr 18861  df-unit 18862  df-invr 18892  df-drng 18971  df-lmod 19087  df-lss 19155  df-lsp 19194  df-lvec 19325  df-lshyp 34785  df-lfl 34866  df-lkr 34894 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator