Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islsat Structured version   Visualization version   GIF version

Theorem islsat 34800
Description: The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lsatset.v 𝑉 = (Base‘𝑊)
lsatset.n 𝑁 = (LSpan‘𝑊)
lsatset.z 0 = (0g𝑊)
lsatset.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
islsat (𝑊𝑋 → (𝑈𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥})))
Distinct variable groups:   𝑥,𝑊   𝑥,𝑋   𝑥,𝑁   𝑥,𝑈   𝑥,𝑉   𝑥, 0
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem islsat
StepHypRef Expression
1 lsatset.v . . . 4 𝑉 = (Base‘𝑊)
2 lsatset.n . . . 4 𝑁 = (LSpan‘𝑊)
3 lsatset.z . . . 4 0 = (0g𝑊)
4 lsatset.a . . . 4 𝐴 = (LSAtoms‘𝑊)
51, 2, 3, 4lsatset 34799 . . 3 (𝑊𝑋𝐴 = ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})))
65eleq2d 2836 . 2 (𝑊𝑋 → (𝑈𝐴𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥}))))
7 eqid 2771 . . 3 (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥}))
8 fvex 6344 . . 3 (𝑁‘{𝑥}) ∈ V
97, 8elrnmpti 5513 . 2 (𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))
106, 9syl6bb 276 1 (𝑊𝑋 → (𝑈𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1631  wcel 2145  wrex 3062  cdif 3720  {csn 4317  cmpt 4864  ran crn 5251  cfv 6030  Basecbs 16064  0gc0g 16308  LSpanclspn 19184  LSAtomsclsa 34783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-fv 6038  df-lsatoms 34785
This theorem is referenced by:  lsatlspsn2  34801  lsatlspsn  34802  islsati  34803  lsateln0  34804  lsatn0  34808  lsatcmp  34812  lsmsat  34817  lsatfixedN  34818  islshpat  34826  lsatcv0  34840  lsat0cv  34842  lcv1  34850  l1cvpat  34863  dih1dimatlem  37139  dihlatat  37147  dochsatshp  37261
  Copyright terms: Public domain W3C validator