![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islpln | Structured version Visualization version GIF version |
Description: The predicate "is a lattice plane". (Contributed by NM, 16-Jun-2012.) |
Ref | Expression |
---|---|
lplnset.b | ⊢ 𝐵 = (Base‘𝐾) |
lplnset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lplnset.n | ⊢ 𝑁 = (LLines‘𝐾) |
lplnset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
islpln | ⊢ (𝐾 ∈ 𝐴 → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lplnset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lplnset.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
3 | lplnset.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
4 | lplnset.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
5 | 1, 2, 3, 4 | lplnset 35133 | . . 3 ⊢ (𝐾 ∈ 𝐴 → 𝑃 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
6 | 5 | eleq2d 2716 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥})) |
7 | breq2 4689 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑦𝐶𝑥 ↔ 𝑦𝐶𝑋)) | |
8 | 7 | rexbidv 3081 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑦 ∈ 𝑁 𝑦𝐶𝑥 ↔ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋)) |
9 | 8 | elrab 3396 | . 2 ⊢ (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥} ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋)) |
10 | 6, 9 | syl6bb 276 | 1 ⊢ (𝐾 ∈ 𝐴 → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 {crab 2945 class class class wbr 4685 ‘cfv 5926 Basecbs 15904 ⋖ ccvr 34867 LLinesclln 35095 LPlanesclpl 35096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-lplanes 35103 |
This theorem is referenced by: islpln4 35135 lplni 35136 lplnbase 35138 lplnnle2at 35145 |
Copyright terms: Public domain | W3C validator |