![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islpir2 | Structured version Visualization version GIF version |
Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lpival.p | ⊢ 𝑃 = (LPIdeal‘𝑅) |
lpiss.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
Ref | Expression |
---|---|
islpir2 | ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 ⊆ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpival.p | . . 3 ⊢ 𝑃 = (LPIdeal‘𝑅) | |
2 | lpiss.u | . . 3 ⊢ 𝑈 = (LIdeal‘𝑅) | |
3 | 1, 2 | islpir 19372 | . 2 ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃)) |
4 | 1, 2 | lpiss 19373 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ⊆ 𝑈) |
5 | 4 | biantrud 529 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑈 ⊆ 𝑃 ↔ (𝑈 ⊆ 𝑃 ∧ 𝑃 ⊆ 𝑈))) |
6 | eqss 3724 | . . . 4 ⊢ (𝑈 = 𝑃 ↔ (𝑈 ⊆ 𝑃 ∧ 𝑃 ⊆ 𝑈)) | |
7 | 5, 6 | syl6rbbr 279 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑈 = 𝑃 ↔ 𝑈 ⊆ 𝑃)) |
8 | 7 | pm5.32i 672 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 = 𝑃) ↔ (𝑅 ∈ Ring ∧ 𝑈 ⊆ 𝑃)) |
9 | 3, 8 | bitri 264 | 1 ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 ⊆ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ⊆ wss 3680 ‘cfv 6001 Ringcrg 18668 LIdealclidl 19293 LPIdealclpidl 19364 LPIRclpir 19365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-ndx 15983 df-slot 15984 df-base 15986 df-sets 15987 df-ress 15988 df-plusg 16077 df-mulr 16078 df-sca 16080 df-vsca 16081 df-ip 16082 df-0g 16225 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-grp 17547 df-minusg 17548 df-sbg 17549 df-subg 17713 df-mgp 18611 df-ur 18623 df-ring 18670 df-subrg 18901 df-lmod 18988 df-lss 19056 df-lsp 19095 df-sra 19295 df-rgmod 19296 df-lidl 19297 df-rsp 19298 df-lpidl 19366 df-lpir 19367 |
This theorem is referenced by: drnglpir 19376 zringlpir 19960 ply1lpir 24058 |
Copyright terms: Public domain | W3C validator |