![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islpir | Structured version Visualization version GIF version |
Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lpival.p | ⊢ 𝑃 = (LPIdeal‘𝑅) |
lpiss.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
Ref | Expression |
---|---|
islpir | ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6332 | . . . 4 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅)) | |
2 | fveq2 6332 | . . . 4 ⊢ (𝑟 = 𝑅 → (LPIdeal‘𝑟) = (LPIdeal‘𝑅)) | |
3 | 1, 2 | eqeq12d 2785 | . . 3 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) = (LPIdeal‘𝑟) ↔ (LIdeal‘𝑅) = (LPIdeal‘𝑅))) |
4 | lpiss.u | . . . 4 ⊢ 𝑈 = (LIdeal‘𝑅) | |
5 | lpival.p | . . . 4 ⊢ 𝑃 = (LPIdeal‘𝑅) | |
6 | 4, 5 | eqeq12i 2784 | . . 3 ⊢ (𝑈 = 𝑃 ↔ (LIdeal‘𝑅) = (LPIdeal‘𝑅)) |
7 | 3, 6 | syl6bbr 278 | . 2 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) = (LPIdeal‘𝑟) ↔ 𝑈 = 𝑃)) |
8 | df-lpir 19458 | . 2 ⊢ LPIR = {𝑟 ∈ Ring ∣ (LIdeal‘𝑟) = (LPIdeal‘𝑟)} | |
9 | 7, 8 | elrab2 3516 | 1 ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ‘cfv 6031 Ringcrg 18754 LIdealclidl 19384 LPIdealclpidl 19455 LPIRclpir 19456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-iota 5994 df-fv 6039 df-lpir 19458 |
This theorem is referenced by: islpir2 19465 lpirring 19466 lpirlnr 38206 |
Copyright terms: Public domain | W3C validator |