Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpcn Structured version   Visualization version   GIF version

Theorem islpcn 40189
Description: A characterization for a limit point for the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
islpcn.s (𝜑𝑆 ⊆ ℂ)
islpcn.p (𝜑𝑃 ∈ ℂ)
Assertion
Ref Expression
islpcn (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒))
Distinct variable groups:   𝑃,𝑒,𝑥   𝑆,𝑒,𝑥   𝜑,𝑒,𝑥

Proof of Theorem islpcn
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtop 22634 . . . 4 (TopOpen‘ℂfld) ∈ Top
32a1i 11 . . 3 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
4 islpcn.s . . 3 (𝜑𝑆 ⊆ ℂ)
5 islpcn.p . . 3 (𝜑𝑃 ∈ ℂ)
6 unicntop 22636 . . . 4 ℂ = (TopOpen‘ℂfld)
76islp2 20997 . . 3 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ⊆ ℂ ∧ 𝑃 ∈ ℂ) → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
83, 4, 5, 7syl3anc 1366 . 2 (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
9 cnxmet 22623 . . . . . . . . . . 11 (abs ∘ − ) ∈ (∞Met‘ℂ)
109a1i 11 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
115adantr 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → 𝑃 ∈ ℂ)
12 simpr 476 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
131cnfldtopn 22632 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
1413blnei 22354 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ ∧ 𝑒 ∈ ℝ+) → (𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
1510, 11, 12, 14syl3anc 1366 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → (𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
1615adantlr 751 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → (𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
17 simplr 807 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
18 ineq1 3840 . . . . . . . . . 10 (𝑛 = (𝑃(ball‘(abs ∘ − ))𝑒) → (𝑛 ∩ (𝑆 ∖ {𝑃})) = ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})))
1918neeq1d 2882 . . . . . . . . 9 (𝑛 = (𝑃(ball‘(abs ∘ − ))𝑒) → ((𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
2019rspcva 3338 . . . . . . . 8 (((𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}) ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) → ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
2116, 17, 20syl2anc 694 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
22 n0 3964 . . . . . . 7 (((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})))
2321, 22sylib 208 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∃𝑥 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})))
24 elinel2 3833 . . . . . . . . . . 11 (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → 𝑥 ∈ (𝑆 ∖ {𝑃}))
2524adantl 481 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥 ∈ (𝑆 ∖ {𝑃}))
264adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑆 ⊆ ℂ)
2724eldifad 3619 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → 𝑥𝑆)
2827adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥𝑆)
2926, 28sseldd 3637 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥 ∈ ℂ)
305adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑃 ∈ ℂ)
3129, 30abssubd 14236 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) = (abs‘(𝑃𝑥)))
32 eqid 2651 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
3332cnmetdval 22621 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑃𝑥)))
3430, 29, 33syl2anc 694 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑃𝑥)))
3531, 34eqtr4d 2688 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) = (𝑃(abs ∘ − )𝑥))
3635adantlr 751 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) = (𝑃(abs ∘ − )𝑥))
37 elinel1 3832 . . . . . . . . . . . . . 14 (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
3837adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
399a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs ∘ − ) ∈ (∞Met‘ℂ))
4011adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑃 ∈ ℂ)
41 rpxr 11878 . . . . . . . . . . . . . . 15 (𝑒 ∈ ℝ+𝑒 ∈ ℝ*)
4241ad2antlr 763 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑒 ∈ ℝ*)
43 elbl 22240 . . . . . . . . . . . . . 14 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ ∧ 𝑒 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒) ↔ (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒)))
4439, 40, 42, 43syl3anc 1366 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒) ↔ (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒)))
4538, 44mpbid 222 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒))
4645simprd 478 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑃(abs ∘ − )𝑥) < 𝑒)
4736, 46eqbrtrd 4707 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) < 𝑒)
4825, 47jca 553 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
4948ex 449 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)))
5049adantlr 751 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)))
5150eximdv 1886 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → (∃𝑥 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)))
5223, 51mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
53 df-rex 2947 . . . . 5 (∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒 ↔ ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
5452, 53sylibr 224 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
5554ralrimiva 2995 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) → ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
569a1i 11 . . . . . . . 8 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
5713neibl 22353 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ) → (𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)))
5856, 5, 57syl2anc 694 . . . . . . 7 (𝜑 → (𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)))
5958simplbda 653 . . . . . 6 ((𝜑𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
6059adantlr 751 . . . . 5 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
61 nfv 1883 . . . . . . . 8 𝑒𝜑
62 nfra1 2970 . . . . . . . 8 𝑒𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒
6361, 62nfan 1868 . . . . . . 7 𝑒(𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
64 nfv 1883 . . . . . . 7 𝑒 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})
6563, 64nfan 1868 . . . . . 6 𝑒((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
66 nfv 1883 . . . . . 6 𝑒(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅
67 simp1l 1105 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → 𝜑)
68 simp2 1082 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → 𝑒 ∈ ℝ+)
6967, 68jca 553 . . . . . . . . 9 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝜑𝑒 ∈ ℝ+))
70 rspa 2959 . . . . . . . . . . 11 ((∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒𝑒 ∈ ℝ+) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
7170adantll 750 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
72713adant3 1101 . . . . . . . . 9 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
73 simp3 1083 . . . . . . . . 9 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
7453biimpi 206 . . . . . . . . . . . 12 (∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒 → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
7574ad2antlr 763 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
76 nfv 1883 . . . . . . . . . . . . . 14 𝑥(𝜑𝑒 ∈ ℝ+)
77 nfre1 3034 . . . . . . . . . . . . . 14 𝑥𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒
7876, 77nfan 1868 . . . . . . . . . . . . 13 𝑥((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
79 nfv 1883 . . . . . . . . . . . . 13 𝑥(𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛
8078, 79nfan 1868 . . . . . . . . . . . 12 𝑥(((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
81 simplr 807 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
824adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑆 ⊆ ℂ)
83 eldifi 3765 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (𝑆 ∖ {𝑃}) → 𝑥𝑆)
8483adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑥𝑆)
8582, 84sseldd 3637 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑥 ∈ ℂ)
8685adantrr 753 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ ℂ)
875adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑃 ∈ ℂ)
8887, 85, 33syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑃𝑥)))
8987, 85abssubd 14236 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → (abs‘(𝑃𝑥)) = (abs‘(𝑥𝑃)))
9088, 89eqtrd 2685 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑥𝑃)))
9190adantrr 753 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑥𝑃)))
92 simprr 811 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (abs‘(𝑥𝑃)) < 𝑒)
9391, 92eqbrtrd 4707 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑃(abs ∘ − )𝑥) < 𝑒)
9486, 93jca 553 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒))
9594adantlr 751 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒))
969a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
9711adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑃 ∈ ℂ)
9841ad2antlr 763 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑒 ∈ ℝ*)
9996, 97, 98, 43syl3anc 1366 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒) ↔ (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒)))
10095, 99mpbird 247 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
101100adantlr 751 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
10281, 101sseldd 3637 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥𝑛)
103 simprl 809 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑆 ∖ {𝑃}))
104102, 103elind 3831 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃})))
105104ex 449 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ((𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒) → 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃}))))
106105adantlr 751 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ((𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒) → 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃}))))
10780, 106eximd 2123 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒) → ∃𝑥 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃}))))
10875, 107mpd 15 . . . . . . . . . 10 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ∃𝑥 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃})))
109 n0 3964 . . . . . . . . . 10 ((𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃})))
110108, 109sylibr 224 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
11169, 72, 73, 110syl21anc 1365 . . . . . . . 8 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
1121113exp 1283 . . . . . . 7 ((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) → (𝑒 ∈ ℝ+ → ((𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
113112adantr 480 . . . . . 6 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → (𝑒 ∈ ℝ+ → ((𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
11465, 66, 113rexlimd 3055 . . . . 5 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → (∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
11560, 114mpd 15 . . . 4 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
116115ralrimiva 2995 . . 3 ((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) → ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
11755, 116impbida 895 . 2 (𝜑 → (∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒))
1188, 117bitrd 268 1 (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wne 2823  wral 2941  wrex 2942  cdif 3604  cin 3606  wss 3607  c0 3948  {csn 4210   class class class wbr 4685  ccom 5147  cfv 5926  (class class class)co 6690  cc 9972  *cxr 10111   < clt 10112  cmin 10304  +crp 11870  abscabs 14018  TopOpenctopn 16129  ∞Metcxmt 19779  ballcbl 19781  fldccnfld 19794  Topctop 20746  neicnei 20949  limPtclp 20986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-xms 22172  df-ms 22173
This theorem is referenced by:  limclner  40201
  Copyright terms: Public domain W3C validator