MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmhm Structured version   Visualization version   GIF version

Theorem islmhm 19240
Description: Property of being a homomorphism of left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Proof shortened by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
islmhm.k 𝐾 = (Scalar‘𝑆)
islmhm.l 𝐿 = (Scalar‘𝑇)
islmhm.b 𝐵 = (Base‘𝐾)
islmhm.e 𝐸 = (Base‘𝑆)
islmhm.m · = ( ·𝑠𝑆)
islmhm.n × = ( ·𝑠𝑇)
Assertion
Ref Expression
islmhm (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝐵   𝑦,𝐸   𝑥,𝑦,𝑆   𝑥,𝐹,𝑦   𝑥,𝑇,𝑦
Allowed substitution hints:   𝐵(𝑦)   · (𝑥,𝑦)   × (𝑥,𝑦)   𝐸(𝑥)   𝐾(𝑥,𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem islmhm
Dummy variables 𝑓 𝑠 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lmhm 19235 . . 3 LMHom = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑥( ·𝑠𝑡)(𝑓𝑦)))})
21elmpt2cl 7027 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LMod ∧ 𝑇 ∈ LMod))
3 oveq12 6805 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠 GrpHom 𝑡) = (𝑆 GrpHom 𝑇))
4 fvexd 6346 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (Scalar‘𝑠) ∈ V)
5 simplr 752 . . . . . . . . . . 11 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑡 = 𝑇)
65fveq2d 6337 . . . . . . . . . 10 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Scalar‘𝑡) = (Scalar‘𝑇))
7 islmhm.l . . . . . . . . . 10 𝐿 = (Scalar‘𝑇)
86, 7syl6eqr 2823 . . . . . . . . 9 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Scalar‘𝑡) = 𝐿)
9 simpr 471 . . . . . . . . . . 11 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑤 = (Scalar‘𝑠))
10 simpll 750 . . . . . . . . . . . 12 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑠 = 𝑆)
1110fveq2d 6337 . . . . . . . . . . 11 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Scalar‘𝑠) = (Scalar‘𝑆))
129, 11eqtrd 2805 . . . . . . . . . 10 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑤 = (Scalar‘𝑆))
13 islmhm.k . . . . . . . . . 10 𝐾 = (Scalar‘𝑆)
1412, 13syl6eqr 2823 . . . . . . . . 9 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑤 = 𝐾)
158, 14eqeq12d 2786 . . . . . . . 8 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → ((Scalar‘𝑡) = 𝑤𝐿 = 𝐾))
1614fveq2d 6337 . . . . . . . . . 10 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑤) = (Base‘𝐾))
17 islmhm.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
1816, 17syl6eqr 2823 . . . . . . . . 9 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑤) = 𝐵)
1910fveq2d 6337 . . . . . . . . . . 11 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑠) = (Base‘𝑆))
20 islmhm.e . . . . . . . . . . 11 𝐸 = (Base‘𝑆)
2119, 20syl6eqr 2823 . . . . . . . . . 10 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑠) = 𝐸)
2210fveq2d 6337 . . . . . . . . . . . . . 14 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → ( ·𝑠𝑠) = ( ·𝑠𝑆))
23 islmhm.m . . . . . . . . . . . . . 14 · = ( ·𝑠𝑆)
2422, 23syl6eqr 2823 . . . . . . . . . . . . 13 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → ( ·𝑠𝑠) = · )
2524oveqd 6813 . . . . . . . . . . . 12 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (𝑥( ·𝑠𝑠)𝑦) = (𝑥 · 𝑦))
2625fveq2d 6337 . . . . . . . . . . 11 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑓‘(𝑥 · 𝑦)))
275fveq2d 6337 . . . . . . . . . . . . 13 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → ( ·𝑠𝑡) = ( ·𝑠𝑇))
28 islmhm.n . . . . . . . . . . . . 13 × = ( ·𝑠𝑇)
2927, 28syl6eqr 2823 . . . . . . . . . . . 12 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → ( ·𝑠𝑡) = × )
3029oveqd 6813 . . . . . . . . . . 11 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (𝑥( ·𝑠𝑡)(𝑓𝑦)) = (𝑥 × (𝑓𝑦)))
3126, 30eqeq12d 2786 . . . . . . . . . 10 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → ((𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑥( ·𝑠𝑡)(𝑓𝑦)) ↔ (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦))))
3221, 31raleqbidv 3301 . . . . . . . . 9 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑥( ·𝑠𝑡)(𝑓𝑦)) ↔ ∀𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦))))
3318, 32raleqbidv 3301 . . . . . . . 8 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑥( ·𝑠𝑡)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦))))
3415, 33anbi12d 616 . . . . . . 7 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑥( ·𝑠𝑡)(𝑓𝑦))) ↔ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)))))
354, 34sbcied 3624 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → ([(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑥( ·𝑠𝑡)(𝑓𝑦))) ↔ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)))))
363, 35rabeqbidv 3345 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑥( ·𝑠𝑡)(𝑓𝑦)))} = {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)))})
37 ovex 6827 . . . . . 6 (𝑆 GrpHom 𝑇) ∈ V
3837rabex 4947 . . . . 5 {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)))} ∈ V
3936, 1, 38ovmpt2a 6942 . . . 4 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝑆 LMHom 𝑇) = {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)))})
4039eleq2d 2836 . . 3 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)))}))
41 fveq1 6332 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥 · 𝑦)) = (𝐹‘(𝑥 · 𝑦)))
42 fveq1 6332 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
4342oveq2d 6812 . . . . . . . 8 (𝑓 = 𝐹 → (𝑥 × (𝑓𝑦)) = (𝑥 × (𝐹𝑦)))
4441, 43eqeq12d 2786 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)) ↔ (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))))
45442ralbidv 3138 . . . . . 6 (𝑓 = 𝐹 → (∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))))
4645anbi2d 614 . . . . 5 (𝑓 = 𝐹 → ((𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦))) ↔ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
4746elrab 3515 . . . 4 (𝐹 ∈ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)))} ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
48 3anass 1080 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
4947, 48bitr4i 267 . . 3 (𝐹 ∈ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)))} ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))))
5040, 49syl6bb 276 . 2 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
512, 50biadan2 820 1 (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  {crab 3065  Vcvv 3351  [wsbc 3587  cfv 6030  (class class class)co 6796  Basecbs 16064  Scalarcsca 16152   ·𝑠 cvsca 16153   GrpHom cghm 17865  LModclmod 19073   LMHom clmhm 19232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-iota 5993  df-fun 6032  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-lmhm 19235
This theorem is referenced by:  islmhm3  19241  lmhmlem  19242  lmhmlin  19248  islmhmd  19252  reslmhm  19265  lmhmpropd  19286
  Copyright terms: Public domain W3C validator