Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  islly2 Structured version   Visualization version   GIF version

Theorem islly2 21510
 Description: An alternative expression for 𝐽 ∈ Locally 𝐴 when 𝐴 passes to open subspaces: A space is locally 𝐴 if every point is contained in an open neighborhood with property 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypotheses
Ref Expression
restlly.1 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
islly2.2 𝑋 = 𝐽
Assertion
Ref Expression
islly2 (𝜑 → (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
Distinct variable groups:   𝑢,𝑗,𝑥,𝑦,𝐴   𝑗,𝐽,𝑢,𝑥,𝑦   𝜑,𝑗,𝑢,𝑥,𝑦   𝑢,𝑋,𝑦
Allowed substitution hints:   𝑋(𝑥,𝑗)

Proof of Theorem islly2
Dummy variables 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 21498 . . . 4 (𝐽 ∈ Locally 𝐴𝐽 ∈ Top)
21adantl 473 . . 3 ((𝜑𝐽 ∈ Locally 𝐴) → 𝐽 ∈ Top)
3 simplr 809 . . . . . 6 (((𝜑𝐽 ∈ Locally 𝐴) ∧ 𝑦𝑋) → 𝐽 ∈ Locally 𝐴)
42adantr 472 . . . . . . 7 (((𝜑𝐽 ∈ Locally 𝐴) ∧ 𝑦𝑋) → 𝐽 ∈ Top)
5 islly2.2 . . . . . . . 8 𝑋 = 𝐽
65topopn 20934 . . . . . . 7 (𝐽 ∈ Top → 𝑋𝐽)
74, 6syl 17 . . . . . 6 (((𝜑𝐽 ∈ Locally 𝐴) ∧ 𝑦𝑋) → 𝑋𝐽)
8 simpr 479 . . . . . 6 (((𝜑𝐽 ∈ Locally 𝐴) ∧ 𝑦𝑋) → 𝑦𝑋)
9 llyi 21500 . . . . . 6 ((𝐽 ∈ Locally 𝐴𝑋𝐽𝑦𝑋) → ∃𝑢𝐽 (𝑢𝑋𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
103, 7, 8, 9syl3anc 1477 . . . . 5 (((𝜑𝐽 ∈ Locally 𝐴) ∧ 𝑦𝑋) → ∃𝑢𝐽 (𝑢𝑋𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
11 3simpc 1147 . . . . . 6 ((𝑢𝑋𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) → (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
1211reximi 3150 . . . . 5 (∃𝑢𝐽 (𝑢𝑋𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) → ∃𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
1310, 12syl 17 . . . 4 (((𝜑𝐽 ∈ Locally 𝐴) ∧ 𝑦𝑋) → ∃𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
1413ralrimiva 3105 . . 3 ((𝜑𝐽 ∈ Locally 𝐴) → ∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
152, 14jca 555 . 2 ((𝜑𝐽 ∈ Locally 𝐴) → (𝐽 ∈ Top ∧ ∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
16 simprl 811 . . 3 ((𝜑 ∧ (𝐽 ∈ Top ∧ ∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Top)
17 elssuni 4620 . . . . . . . . 9 (𝑧𝐽𝑧 𝐽)
1817, 5syl6sseqr 3794 . . . . . . . 8 (𝑧𝐽𝑧𝑋)
1918adantl 473 . . . . . . 7 (((𝜑𝐽 ∈ Top) ∧ 𝑧𝐽) → 𝑧𝑋)
20 ssralv 3808 . . . . . . 7 (𝑧𝑋 → (∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) → ∀𝑦𝑧𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
2119, 20syl 17 . . . . . 6 (((𝜑𝐽 ∈ Top) ∧ 𝑧𝐽) → (∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) → ∀𝑦𝑧𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
22 simpllr 817 . . . . . . . . . . . 12 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Top)
23 simplrl 819 . . . . . . . . . . . 12 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑧𝐽)
24 simprl 811 . . . . . . . . . . . 12 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑢𝐽)
25 inopn 20927 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑧𝐽𝑢𝐽) → (𝑧𝑢) ∈ 𝐽)
2622, 23, 24, 25syl3anc 1477 . . . . . . . . . . 11 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → (𝑧𝑢) ∈ 𝐽)
27 inss1 3977 . . . . . . . . . . . . 13 (𝑧𝑢) ⊆ 𝑧
28 vex 3344 . . . . . . . . . . . . . 14 𝑧 ∈ V
2928elpw2 4978 . . . . . . . . . . . . 13 ((𝑧𝑢) ∈ 𝒫 𝑧 ↔ (𝑧𝑢) ⊆ 𝑧)
3027, 29mpbir 221 . . . . . . . . . . . 12 (𝑧𝑢) ∈ 𝒫 𝑧
3130a1i 11 . . . . . . . . . . 11 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → (𝑧𝑢) ∈ 𝒫 𝑧)
3226, 31elind 3942 . . . . . . . . . 10 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → (𝑧𝑢) ∈ (𝐽 ∩ 𝒫 𝑧))
33 simplrr 820 . . . . . . . . . . 11 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑦𝑧)
34 simprrl 823 . . . . . . . . . . 11 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑦𝑢)
3533, 34elind 3942 . . . . . . . . . 10 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑦 ∈ (𝑧𝑢))
36 inss2 3978 . . . . . . . . . . . . 13 (𝑧𝑢) ⊆ 𝑢
3736a1i 11 . . . . . . . . . . . 12 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → (𝑧𝑢) ⊆ 𝑢)
38 restabs 21192 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑧𝑢) ⊆ 𝑢𝑢𝐽) → ((𝐽t 𝑢) ↾t (𝑧𝑢)) = (𝐽t (𝑧𝑢)))
3922, 37, 24, 38syl3anc 1477 . . . . . . . . . . 11 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → ((𝐽t 𝑢) ↾t (𝑧𝑢)) = (𝐽t (𝑧𝑢)))
40 oveq2 6823 . . . . . . . . . . . . 13 (𝑥 = (𝑧𝑢) → ((𝐽t 𝑢) ↾t 𝑥) = ((𝐽t 𝑢) ↾t (𝑧𝑢)))
4140eleq1d 2825 . . . . . . . . . . . 12 (𝑥 = (𝑧𝑢) → (((𝐽t 𝑢) ↾t 𝑥) ∈ 𝐴 ↔ ((𝐽t 𝑢) ↾t (𝑧𝑢)) ∈ 𝐴))
42 oveq1 6822 . . . . . . . . . . . . . . 15 (𝑗 = (𝐽t 𝑢) → (𝑗t 𝑥) = ((𝐽t 𝑢) ↾t 𝑥))
4342eleq1d 2825 . . . . . . . . . . . . . 14 (𝑗 = (𝐽t 𝑢) → ((𝑗t 𝑥) ∈ 𝐴 ↔ ((𝐽t 𝑢) ↾t 𝑥) ∈ 𝐴))
4443raleqbi1dv 3286 . . . . . . . . . . . . 13 (𝑗 = (𝐽t 𝑢) → (∀𝑥𝑗 (𝑗t 𝑥) ∈ 𝐴 ↔ ∀𝑥 ∈ (𝐽t 𝑢)((𝐽t 𝑢) ↾t 𝑥) ∈ 𝐴))
45 restlly.1 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
4645ralrimivva 3110 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑗𝐴𝑥𝑗 (𝑗t 𝑥) ∈ 𝐴)
4746ad3antrrr 768 . . . . . . . . . . . . 13 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → ∀𝑗𝐴𝑥𝑗 (𝑗t 𝑥) ∈ 𝐴)
48 simprrr 824 . . . . . . . . . . . . 13 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → (𝐽t 𝑢) ∈ 𝐴)
4944, 47, 48rspcdva 3456 . . . . . . . . . . . 12 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → ∀𝑥 ∈ (𝐽t 𝑢)((𝐽t 𝑢) ↾t 𝑥) ∈ 𝐴)
50 elrestr 16312 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑢𝐽𝑧𝐽) → (𝑧𝑢) ∈ (𝐽t 𝑢))
5122, 24, 23, 50syl3anc 1477 . . . . . . . . . . . 12 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → (𝑧𝑢) ∈ (𝐽t 𝑢))
5241, 49, 51rspcdva 3456 . . . . . . . . . . 11 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → ((𝐽t 𝑢) ↾t (𝑧𝑢)) ∈ 𝐴)
5339, 52eqeltrrd 2841 . . . . . . . . . 10 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → (𝐽t (𝑧𝑢)) ∈ 𝐴)
54 eleq2 2829 . . . . . . . . . . . 12 (𝑣 = (𝑧𝑢) → (𝑦𝑣𝑦 ∈ (𝑧𝑢)))
55 oveq2 6823 . . . . . . . . . . . . 13 (𝑣 = (𝑧𝑢) → (𝐽t 𝑣) = (𝐽t (𝑧𝑢)))
5655eleq1d 2825 . . . . . . . . . . . 12 (𝑣 = (𝑧𝑢) → ((𝐽t 𝑣) ∈ 𝐴 ↔ (𝐽t (𝑧𝑢)) ∈ 𝐴))
5754, 56anbi12d 749 . . . . . . . . . . 11 (𝑣 = (𝑧𝑢) → ((𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴) ↔ (𝑦 ∈ (𝑧𝑢) ∧ (𝐽t (𝑧𝑢)) ∈ 𝐴)))
5857rspcev 3450 . . . . . . . . . 10 (((𝑧𝑢) ∈ (𝐽 ∩ 𝒫 𝑧) ∧ (𝑦 ∈ (𝑧𝑢) ∧ (𝐽t (𝑧𝑢)) ∈ 𝐴)) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))
5932, 35, 53, 58syl12anc 1475 . . . . . . . . 9 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))
6059rexlimdvaa 3171 . . . . . . . 8 (((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) → (∃𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴)))
6160anassrs 683 . . . . . . 7 ((((𝜑𝐽 ∈ Top) ∧ 𝑧𝐽) ∧ 𝑦𝑧) → (∃𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴)))
6261ralimdva 3101 . . . . . 6 (((𝜑𝐽 ∈ Top) ∧ 𝑧𝐽) → (∀𝑦𝑧𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) → ∀𝑦𝑧𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴)))
6321, 62syld 47 . . . . 5 (((𝜑𝐽 ∈ Top) ∧ 𝑧𝐽) → (∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) → ∀𝑦𝑧𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴)))
6463ralrimdva 3108 . . . 4 ((𝜑𝐽 ∈ Top) → (∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) → ∀𝑧𝐽𝑦𝑧𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴)))
6564impr 650 . . 3 ((𝜑 ∧ (𝐽 ∈ Top ∧ ∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → ∀𝑧𝐽𝑦𝑧𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))
66 islly 21494 . . 3 (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑧𝐽𝑦𝑧𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴)))
6716, 65, 66sylanbrc 701 . 2 ((𝜑 ∧ (𝐽 ∈ Top ∧ ∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Locally 𝐴)
6815, 67impbida 913 1 (𝜑 → (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2140  ∀wral 3051  ∃wrex 3052   ∩ cin 3715   ⊆ wss 3716  𝒫 cpw 4303  ∪ cuni 4589  (class class class)co 6815   ↾t crest 16304  Topctop 20921  Locally clly 21490 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pr 5056  ax-un 7116 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-rest 16306  df-top 20922  df-lly 21492 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator