![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islln | Structured version Visualization version GIF version |
Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.) |
Ref | Expression |
---|---|
llnset.b | ⊢ 𝐵 = (Base‘𝐾) |
llnset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
llnset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
llnset.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
islln | ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | llnset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | llnset.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
3 | llnset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | llnset.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
5 | 1, 2, 3, 4 | llnset 35313 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝑁 = {𝑥 ∈ 𝐵 ∣ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑥}) |
6 | 5 | eleq2d 2836 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑥})) |
7 | breq2 4790 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑝𝐶𝑥 ↔ 𝑝𝐶𝑋)) | |
8 | 7 | rexbidv 3200 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑝 ∈ 𝐴 𝑝𝐶𝑥 ↔ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋)) |
9 | 8 | elrab 3515 | . 2 ⊢ (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑥} ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋)) |
10 | 6, 9 | syl6bb 276 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∃wrex 3062 {crab 3065 class class class wbr 4786 ‘cfv 6031 Basecbs 16064 ⋖ ccvr 35071 Atomscatm 35072 LLinesclln 35299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-llines 35306 |
This theorem is referenced by: islln4 35315 llni 35316 llnbase 35317 llnnleat 35321 |
Copyright terms: Public domain | W3C validator |