MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds4 Structured version   Visualization version   GIF version

Theorem islinds4 20397
Description: A set is independent in a vector space iff it is a subset of some basis. (AC equivalent) (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
islinds4.j 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
islinds4 (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏𝐽 𝑌𝑏))
Distinct variable groups:   𝐽,𝑏   𝑊,𝑏   𝑌,𝑏

Proof of Theorem islinds4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 474 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → 𝑊 ∈ LVec)
2 eqid 2761 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
32linds1 20372 . . . . 5 (𝑌 ∈ (LIndS‘𝑊) → 𝑌 ⊆ (Base‘𝑊))
43adantl 473 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → 𝑌 ⊆ (Base‘𝑊))
5 lveclmod 19329 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
65ad2antrr 764 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → 𝑊 ∈ LMod)
7 eqid 2761 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
87lvecdrng 19328 . . . . . . . 8 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
9 drngnzr 19485 . . . . . . . 8 ((Scalar‘𝑊) ∈ DivRing → (Scalar‘𝑊) ∈ NzRing)
108, 9syl 17 . . . . . . 7 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ NzRing)
1110ad2antrr 764 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → (Scalar‘𝑊) ∈ NzRing)
12 simplr 809 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → 𝑌 ∈ (LIndS‘𝑊))
13 simpr 479 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → 𝑥𝑌)
14 eqid 2761 . . . . . . 7 (LSpan‘𝑊) = (LSpan‘𝑊)
1514, 7lindsind2 20381 . . . . . 6 (((𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NzRing) ∧ 𝑌 ∈ (LIndS‘𝑊) ∧ 𝑥𝑌) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥})))
166, 11, 12, 13, 15syl211anc 1483 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥})))
1716ralrimiva 3105 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → ∀𝑥𝑌 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥})))
18 islinds4.j . . . . 5 𝐽 = (LBasis‘𝑊)
1918, 2, 14lbsext 19386 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ⊆ (Base‘𝑊) ∧ ∀𝑥𝑌 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) → ∃𝑏𝐽 𝑌𝑏)
201, 4, 17, 19syl3anc 1477 . . 3 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → ∃𝑏𝐽 𝑌𝑏)
2120ex 449 . 2 (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) → ∃𝑏𝐽 𝑌𝑏))
225ad2antrr 764 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑊 ∈ LMod)
2318lbslinds 20395 . . . . . . 7 𝐽 ⊆ (LIndS‘𝑊)
2423sseli 3741 . . . . . 6 (𝑏𝐽𝑏 ∈ (LIndS‘𝑊))
2524ad2antlr 765 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑏 ∈ (LIndS‘𝑊))
26 simpr 479 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑌𝑏)
27 lindsss 20386 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑏 ∈ (LIndS‘𝑊) ∧ 𝑌𝑏) → 𝑌 ∈ (LIndS‘𝑊))
2822, 25, 26, 27syl3anc 1477 . . . 4 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑌 ∈ (LIndS‘𝑊))
2928ex 449 . . 3 ((𝑊 ∈ LVec ∧ 𝑏𝐽) → (𝑌𝑏𝑌 ∈ (LIndS‘𝑊)))
3029rexlimdva 3170 . 2 (𝑊 ∈ LVec → (∃𝑏𝐽 𝑌𝑏𝑌 ∈ (LIndS‘𝑊)))
3121, 30impbid 202 1 (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏𝐽 𝑌𝑏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2140  wral 3051  wrex 3052  cdif 3713  wss 3716  {csn 4322  cfv 6050  Basecbs 16080  Scalarcsca 16167  DivRingcdr 18970  LModclmod 19086  LSpanclspn 19194  LBasisclbs 19297  LVecclvec 19325  NzRingcnzr 19480  LIndSclinds 20367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-ac2 9498  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-rpss 7104  df-om 7233  df-1st 7335  df-2nd 7336  df-tpos 7523  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-card 8976  df-ac 9150  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-3 11293  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-0g 16325  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-grp 17647  df-minusg 17648  df-sbg 17649  df-cmn 18416  df-abl 18417  df-mgp 18711  df-ur 18723  df-ring 18770  df-oppr 18844  df-dvdsr 18862  df-unit 18863  df-invr 18893  df-drng 18972  df-lmod 19088  df-lss 19156  df-lsp 19195  df-lbs 19298  df-lvec 19326  df-nzr 19481  df-lindf 20368  df-linds 20369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator