![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islinds | Structured version Visualization version GIF version |
Description: Property of an independent set of vectors in terms of an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
islinds.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
islinds | ⊢ (𝑊 ∈ 𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3243 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
2 | fveq2 6229 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
3 | 2 | pweqd 4196 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 (Base‘𝑊)) |
4 | breq2 4689 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (( I ↾ 𝑠) LIndF 𝑤 ↔ ( I ↾ 𝑠) LIndF 𝑊)) | |
5 | 3, 4 | rabeqbidv 3226 | . . . . . 6 ⊢ (𝑤 = 𝑊 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤} = {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊}) |
6 | df-linds 20194 | . . . . . 6 ⊢ LIndS = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤}) | |
7 | fvex 6239 | . . . . . . . 8 ⊢ (Base‘𝑊) ∈ V | |
8 | 7 | pwex 4878 | . . . . . . 7 ⊢ 𝒫 (Base‘𝑊) ∈ V |
9 | 8 | rabex 4845 | . . . . . 6 ⊢ {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊} ∈ V |
10 | 5, 6, 9 | fvmpt 6321 | . . . . 5 ⊢ (𝑊 ∈ V → (LIndS‘𝑊) = {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊}) |
11 | 1, 10 | syl 17 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → (LIndS‘𝑊) = {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊}) |
12 | 11 | eleq2d 2716 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ 𝑋 ∈ {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊})) |
13 | reseq2 5423 | . . . . 5 ⊢ (𝑠 = 𝑋 → ( I ↾ 𝑠) = ( I ↾ 𝑋)) | |
14 | 13 | breq1d 4695 | . . . 4 ⊢ (𝑠 = 𝑋 → (( I ↾ 𝑠) LIndF 𝑊 ↔ ( I ↾ 𝑋) LIndF 𝑊)) |
15 | 14 | elrab 3396 | . . 3 ⊢ (𝑋 ∈ {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊} ↔ (𝑋 ∈ 𝒫 (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊)) |
16 | 12, 15 | syl6bb 276 | . 2 ⊢ (𝑊 ∈ 𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ∈ 𝒫 (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊))) |
17 | 7 | elpw2 4858 | . . . 4 ⊢ (𝑋 ∈ 𝒫 (Base‘𝑊) ↔ 𝑋 ⊆ (Base‘𝑊)) |
18 | islinds.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
19 | 18 | sseq2i 3663 | . . . 4 ⊢ (𝑋 ⊆ 𝐵 ↔ 𝑋 ⊆ (Base‘𝑊)) |
20 | 17, 19 | bitr4i 267 | . . 3 ⊢ (𝑋 ∈ 𝒫 (Base‘𝑊) ↔ 𝑋 ⊆ 𝐵) |
21 | 20 | anbi1i 731 | . 2 ⊢ ((𝑋 ∈ 𝒫 (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)) |
22 | 16, 21 | syl6bb 276 | 1 ⊢ (𝑊 ∈ 𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 Vcvv 3231 ⊆ wss 3607 𝒫 cpw 4191 class class class wbr 4685 I cid 5052 ↾ cres 5145 ‘cfv 5926 Basecbs 15904 LIndF clindf 20191 LIndSclinds 20192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-res 5155 df-iota 5889 df-fun 5928 df-fv 5934 df-linds 20194 |
This theorem is referenced by: linds1 20197 linds2 20198 islinds2 20200 lindsss 20211 lindsmm 20215 lsslinds 20218 |
Copyright terms: Public domain | W3C validator |