Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islindeps Structured version   Visualization version   GIF version

Theorem islindeps 42567
Description: The property of being a linearly dependent subset. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islindeps.b 𝐵 = (Base‘𝑀)
islindeps.z 𝑍 = (0g𝑀)
islindeps.r 𝑅 = (Scalar‘𝑀)
islindeps.e 𝐸 = (Base‘𝑅)
islindeps.0 0 = (0g𝑅)
Assertion
Ref Expression
islindeps ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ (𝐸𝑚 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 )))
Distinct variable groups:   𝑓,𝐸   𝑓,𝑀,𝑥   𝑆,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝐸(𝑥)   𝑊(𝑥,𝑓)   0 (𝑥,𝑓)   𝑍(𝑥,𝑓)

Proof of Theorem islindeps
StepHypRef Expression
1 lindepsnlininds 42566 . . 3 ((𝑆 ∈ 𝒫 𝐵𝑀𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀))
21ancoms 468 . 2 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀))
3 islindeps.b . . . . . 6 𝐵 = (Base‘𝑀)
4 islindeps.z . . . . . 6 𝑍 = (0g𝑀)
5 islindeps.r . . . . . 6 𝑅 = (Scalar‘𝑀)
6 islindeps.e . . . . . 6 𝐸 = (Base‘𝑅)
7 islindeps.0 . . . . . 6 0 = (0g𝑅)
83, 4, 5, 6, 7islininds 42560 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑀𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
98ancoms 468 . . . 4 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
10 ibar 524 . . . . . 6 (𝑆 ∈ 𝒫 𝐵 → (∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
1110bicomd 213 . . . . 5 (𝑆 ∈ 𝒫 𝐵 → ((𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) ↔ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
1211adantl 481 . . . 4 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → ((𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) ↔ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
139, 12bitrd 268 . . 3 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
1413notbid 307 . 2 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (¬ 𝑆 linIndS 𝑀 ↔ ¬ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
15 rexnal 3024 . . . 4 (∃𝑓 ∈ (𝐸𝑚 𝑆) ¬ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ¬ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))
16 df-ne 2824 . . . . . . . . 9 ((𝑓𝑥) ≠ 0 ↔ ¬ (𝑓𝑥) = 0 )
1716rexbii 3070 . . . . . . . 8 (∃𝑥𝑆 (𝑓𝑥) ≠ 0 ↔ ∃𝑥𝑆 ¬ (𝑓𝑥) = 0 )
18 rexnal 3024 . . . . . . . 8 (∃𝑥𝑆 ¬ (𝑓𝑥) = 0 ↔ ¬ ∀𝑥𝑆 (𝑓𝑥) = 0 )
1917, 18bitr2i 265 . . . . . . 7 (¬ ∀𝑥𝑆 (𝑓𝑥) = 0 ↔ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 )
2019anbi2i 730 . . . . . 6 (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ∧ ¬ ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 ))
21 pm4.61 441 . . . . . 6 (¬ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ∧ ¬ ∀𝑥𝑆 (𝑓𝑥) = 0 ))
22 df-3an 1056 . . . . . 6 ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 ))
2320, 21, 223bitr4i 292 . . . . 5 (¬ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 ))
2423rexbii 3070 . . . 4 (∃𝑓 ∈ (𝐸𝑚 𝑆) ¬ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ∃𝑓 ∈ (𝐸𝑚 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 ))
2515, 24bitr3i 266 . . 3 (¬ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ∃𝑓 ∈ (𝐸𝑚 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 ))
2625a1i 11 . 2 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (¬ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ∃𝑓 ∈ (𝐸𝑚 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 )))
272, 14, 263bitrd 294 1 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ (𝐸𝑚 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  𝒫 cpw 4191   class class class wbr 4685  cfv 5926  (class class class)co 6690  𝑚 cmap 7899   finSupp cfsupp 8316  Basecbs 15904  Scalarcsca 15991  0gc0g 16147   linC clinc 42518   linIndS clininds 42554   linDepS clindeps 42555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-iota 5889  df-fv 5934  df-ov 6693  df-lininds 42556  df-lindeps 42558
This theorem is referenced by:  el0ldep  42580  ldepspr  42587  islindeps2  42597  isldepslvec2  42599  zlmodzxzldep  42618
  Copyright terms: Public domain W3C validator