MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinf Structured version   Visualization version   GIF version

Theorem isinf 8214
Description: Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
isinf 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
Distinct variable group:   𝑥,𝐴,𝑛

Proof of Theorem isinf
Dummy variables 𝑓 𝑚 𝑦 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4689 . . . . . 6 (𝑛 = ∅ → (𝑥𝑛𝑥 ≈ ∅))
21anbi2d 740 . . . . 5 (𝑛 = ∅ → ((𝑥𝐴𝑥𝑛) ↔ (𝑥𝐴𝑥 ≈ ∅)))
32exbidv 1890 . . . 4 (𝑛 = ∅ → (∃𝑥(𝑥𝐴𝑥𝑛) ↔ ∃𝑥(𝑥𝐴𝑥 ≈ ∅)))
4 breq2 4689 . . . . . 6 (𝑛 = 𝑚 → (𝑥𝑛𝑥𝑚))
54anbi2d 740 . . . . 5 (𝑛 = 𝑚 → ((𝑥𝐴𝑥𝑛) ↔ (𝑥𝐴𝑥𝑚)))
65exbidv 1890 . . . 4 (𝑛 = 𝑚 → (∃𝑥(𝑥𝐴𝑥𝑛) ↔ ∃𝑥(𝑥𝐴𝑥𝑚)))
7 sseq1 3659 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
87adantl 481 . . . . . 6 ((𝑛 = suc 𝑚𝑥 = 𝑦) → (𝑥𝐴𝑦𝐴))
9 breq1 4688 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑛𝑦𝑛))
10 breq2 4689 . . . . . . 7 (𝑛 = suc 𝑚 → (𝑦𝑛𝑦 ≈ suc 𝑚))
119, 10sylan9bbr 737 . . . . . 6 ((𝑛 = suc 𝑚𝑥 = 𝑦) → (𝑥𝑛𝑦 ≈ suc 𝑚))
128, 11anbi12d 747 . . . . 5 ((𝑛 = suc 𝑚𝑥 = 𝑦) → ((𝑥𝐴𝑥𝑛) ↔ (𝑦𝐴𝑦 ≈ suc 𝑚)))
1312cbvexdva 2319 . . . 4 (𝑛 = suc 𝑚 → (∃𝑥(𝑥𝐴𝑥𝑛) ↔ ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))
14 0ss 4005 . . . . . 6 ∅ ⊆ 𝐴
15 0ex 4823 . . . . . . 7 ∅ ∈ V
1615enref 8030 . . . . . 6 ∅ ≈ ∅
17 sseq1 3659 . . . . . . . 8 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
18 breq1 4688 . . . . . . . 8 (𝑥 = ∅ → (𝑥 ≈ ∅ ↔ ∅ ≈ ∅))
1917, 18anbi12d 747 . . . . . . 7 (𝑥 = ∅ → ((𝑥𝐴𝑥 ≈ ∅) ↔ (∅ ⊆ 𝐴 ∧ ∅ ≈ ∅)))
2015, 19spcev 3331 . . . . . 6 ((∅ ⊆ 𝐴 ∧ ∅ ≈ ∅) → ∃𝑥(𝑥𝐴𝑥 ≈ ∅))
2114, 16, 20mp2an 708 . . . . 5 𝑥(𝑥𝐴𝑥 ≈ ∅)
2221a1i 11 . . . 4 𝐴 ∈ Fin → ∃𝑥(𝑥𝐴𝑥 ≈ ∅))
23 ssdif0 3975 . . . . . . . . . . . . 13 (𝐴𝑥 ↔ (𝐴𝑥) = ∅)
24 eqss 3651 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 ↔ (𝑥𝐴𝐴𝑥))
25 breq1 4688 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝐴 → (𝑥𝑚𝐴𝑚))
2625biimpa 500 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝐴𝑥𝑚) → 𝐴𝑚)
27 rspe 3032 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ ω ∧ 𝐴𝑚) → ∃𝑚 ∈ ω 𝐴𝑚)
2826, 27sylan2 490 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ω ∧ (𝑥 = 𝐴𝑥𝑚)) → ∃𝑚 ∈ ω 𝐴𝑚)
29 isfi 8021 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐴𝑚)
3028, 29sylibr 224 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ω ∧ (𝑥 = 𝐴𝑥𝑚)) → 𝐴 ∈ Fin)
3130expcom 450 . . . . . . . . . . . . . . 15 ((𝑥 = 𝐴𝑥𝑚) → (𝑚 ∈ ω → 𝐴 ∈ Fin))
3224, 31sylanbr 489 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐴𝑥) ∧ 𝑥𝑚) → (𝑚 ∈ ω → 𝐴 ∈ Fin))
3332ex 449 . . . . . . . . . . . . 13 ((𝑥𝐴𝐴𝑥) → (𝑥𝑚 → (𝑚 ∈ ω → 𝐴 ∈ Fin)))
3423, 33sylan2br 492 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ (𝐴𝑥) = ∅) → (𝑥𝑚 → (𝑚 ∈ ω → 𝐴 ∈ Fin)))
3534expcom 450 . . . . . . . . . . 11 ((𝐴𝑥) = ∅ → (𝑥𝐴 → (𝑥𝑚 → (𝑚 ∈ ω → 𝐴 ∈ Fin))))
36353impd 1303 . . . . . . . . . 10 ((𝐴𝑥) = ∅ → ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → 𝐴 ∈ Fin))
3736com12 32 . . . . . . . . 9 ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → ((𝐴𝑥) = ∅ → 𝐴 ∈ Fin))
3837con3d 148 . . . . . . . 8 ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → (¬ 𝐴 ∈ Fin → ¬ (𝐴𝑥) = ∅))
39 bren 8006 . . . . . . . . . . 11 (𝑥𝑚 ↔ ∃𝑓 𝑓:𝑥1-1-onto𝑚)
40 neq0 3963 . . . . . . . . . . . . . . 15 (¬ (𝐴𝑥) = ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴𝑥))
41 eldifi 3765 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝐴𝑥) → 𝑧𝐴)
4241snssd 4372 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (𝐴𝑥) → {𝑧} ⊆ 𝐴)
43 unss 3820 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝐴 ∧ {𝑧} ⊆ 𝐴) ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐴)
4443biimpi 206 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴 ∧ {𝑧} ⊆ 𝐴) → (𝑥 ∪ {𝑧}) ⊆ 𝐴)
4542, 44sylan2 490 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝐴𝑧 ∈ (𝐴𝑥)) → (𝑥 ∪ {𝑧}) ⊆ 𝐴)
4645ad2ant2r 798 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴𝑓:𝑥1-1-onto𝑚) ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → (𝑥 ∪ {𝑧}) ⊆ 𝐴)
47 vex 3234 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧 ∈ V
48 vex 3234 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑚 ∈ V
4947, 48f1osn 6214 . . . . . . . . . . . . . . . . . . . . . . 23 {⟨𝑧, 𝑚⟩}:{𝑧}–1-1-onto→{𝑚}
5049jctr 564 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:𝑥1-1-onto𝑚 → (𝑓:𝑥1-1-onto𝑚 ∧ {⟨𝑧, 𝑚⟩}:{𝑧}–1-1-onto→{𝑚}))
51 eldifn 3766 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ (𝐴𝑥) → ¬ 𝑧𝑥)
52 disjsn 4278 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑥)
5351, 52sylibr 224 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (𝐴𝑥) → (𝑥 ∩ {𝑧}) = ∅)
54 nnord 7115 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ ω → Ord 𝑚)
55 orddisj 5800 . . . . . . . . . . . . . . . . . . . . . . . 24 (Ord 𝑚 → (𝑚 ∩ {𝑚}) = ∅)
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ω → (𝑚 ∩ {𝑚}) = ∅)
5753, 56anim12i 589 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω) → ((𝑥 ∩ {𝑧}) = ∅ ∧ (𝑚 ∩ {𝑚}) = ∅))
58 f1oun 6194 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓:𝑥1-1-onto𝑚 ∧ {⟨𝑧, 𝑚⟩}:{𝑧}–1-1-onto→{𝑚}) ∧ ((𝑥 ∩ {𝑧}) = ∅ ∧ (𝑚 ∩ {𝑚}) = ∅)) → (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚}))
5950, 57, 58syl2an 493 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:𝑥1-1-onto𝑚 ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚}))
60 df-suc 5767 . . . . . . . . . . . . . . . . . . . . . . 23 suc 𝑚 = (𝑚 ∪ {𝑚})
61 f1oeq3 6167 . . . . . . . . . . . . . . . . . . . . . . 23 (suc 𝑚 = (𝑚 ∪ {𝑚}) → ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 ↔ (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚})))
6260, 61ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 ↔ (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚}))
63 vex 3234 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑓 ∈ V
64 snex 4938 . . . . . . . . . . . . . . . . . . . . . . . . 25 {⟨𝑧, 𝑚⟩} ∈ V
6563, 64unex 6998 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 ∪ {⟨𝑧, 𝑚⟩}) ∈ V
66 f1oeq1 6165 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑚⟩}) → (𝑔:(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 ↔ (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚))
6765, 66spcev 3331 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 → ∃𝑔 𝑔:(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚)
68 bren 8006 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∪ {𝑧}) ≈ suc 𝑚 ↔ ∃𝑔 𝑔:(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚)
6967, 68sylibr 224 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 → (𝑥 ∪ {𝑧}) ≈ suc 𝑚)
7062, 69sylbir 225 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚}) → (𝑥 ∪ {𝑧}) ≈ suc 𝑚)
7159, 70syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:𝑥1-1-onto𝑚 ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → (𝑥 ∪ {𝑧}) ≈ suc 𝑚)
7271adantll 750 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴𝑓:𝑥1-1-onto𝑚) ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → (𝑥 ∪ {𝑧}) ≈ suc 𝑚)
73 vex 3234 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
74 snex 4938 . . . . . . . . . . . . . . . . . . . . 21 {𝑧} ∈ V
7573, 74unex 6998 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∪ {𝑧}) ∈ V
76 sseq1 3659 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑦𝐴 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐴))
77 breq1 4688 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑦 ≈ suc 𝑚 ↔ (𝑥 ∪ {𝑧}) ≈ suc 𝑚))
7876, 77anbi12d 747 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 ∪ {𝑧}) → ((𝑦𝐴𝑦 ≈ suc 𝑚) ↔ ((𝑥 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∪ {𝑧}) ≈ suc 𝑚)))
7975, 78spcev 3331 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∪ {𝑧}) ≈ suc 𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))
8046, 72, 79syl2anc 694 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴𝑓:𝑥1-1-onto𝑚) ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))
8180expcom 450 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω) → ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))
8281ex 449 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐴𝑥) → (𝑚 ∈ ω → ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
8382exlimiv 1898 . . . . . . . . . . . . . . 15 (∃𝑧 𝑧 ∈ (𝐴𝑥) → (𝑚 ∈ ω → ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
8440, 83sylbi 207 . . . . . . . . . . . . . 14 (¬ (𝐴𝑥) = ∅ → (𝑚 ∈ ω → ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
8584com13 88 . . . . . . . . . . . . 13 ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → (𝑚 ∈ ω → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
8685expcom 450 . . . . . . . . . . . 12 (𝑓:𝑥1-1-onto𝑚 → (𝑥𝐴 → (𝑚 ∈ ω → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))))
8786exlimiv 1898 . . . . . . . . . . 11 (∃𝑓 𝑓:𝑥1-1-onto𝑚 → (𝑥𝐴 → (𝑚 ∈ ω → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))))
8839, 87sylbi 207 . . . . . . . . . 10 (𝑥𝑚 → (𝑥𝐴 → (𝑚 ∈ ω → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))))
8988com12 32 . . . . . . . . 9 (𝑥𝐴 → (𝑥𝑚 → (𝑚 ∈ ω → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))))
90893imp 1275 . . . . . . . 8 ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))
9138, 90syld 47 . . . . . . 7 ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → (¬ 𝐴 ∈ Fin → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))
92913expia 1286 . . . . . 6 ((𝑥𝐴𝑥𝑚) → (𝑚 ∈ ω → (¬ 𝐴 ∈ Fin → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
9392exlimiv 1898 . . . . 5 (∃𝑥(𝑥𝐴𝑥𝑚) → (𝑚 ∈ ω → (¬ 𝐴 ∈ Fin → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
9493com3l 89 . . . 4 (𝑚 ∈ ω → (¬ 𝐴 ∈ Fin → (∃𝑥(𝑥𝐴𝑥𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
953, 6, 13, 22, 94finds2 7136 . . 3 (𝑛 ∈ ω → (¬ 𝐴 ∈ Fin → ∃𝑥(𝑥𝐴𝑥𝑛)))
9695com12 32 . 2 𝐴 ∈ Fin → (𝑛 ∈ ω → ∃𝑥(𝑥𝐴𝑥𝑛)))
9796ralrimiv 2994 1 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wral 2941  wrex 2942  cdif 3604  cun 3605  cin 3606  wss 3607  c0 3948  {csn 4210  cop 4216   class class class wbr 4685  Ord word 5760  suc csuc 5763  1-1-ontowf1o 5925  ωcom 7107  cen 7994  Fincfn 7997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-om 7108  df-en 7998  df-fin 8001
This theorem is referenced by:  fineqvlem  8215  isinffi  8856  domtriomlem  9302  ishashinf  13285
  Copyright terms: Public domain W3C validator