Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isidlc Structured version   Visualization version   GIF version

Theorem isidlc 34146
Description: The predicate "is an ideal of the commutative ring 𝑅." (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idlval.1 𝐺 = (1st𝑅)
idlval.2 𝐻 = (2nd𝑅)
idlval.3 𝑋 = ran 𝐺
idlval.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
isidlc (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑧,𝑋   𝑥,𝐼,𝑦,𝑧   𝑥,𝑋
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝑋(𝑦)   𝑍(𝑥,𝑦,𝑧)

Proof of Theorem isidlc
StepHypRef Expression
1 crngorngo 34131 . . 3 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
2 idlval.1 . . . 4 𝐺 = (1st𝑅)
3 idlval.2 . . . 4 𝐻 = (2nd𝑅)
4 idlval.3 . . . 4 𝑋 = ran 𝐺
5 idlval.4 . . . 4 𝑍 = (GId‘𝐺)
62, 3, 4, 5isidl 34145 . . 3 (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))))
71, 6syl 17 . 2 (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))))
8 ssel2 3747 . . . . . . . 8 ((𝐼𝑋𝑥𝐼) → 𝑥𝑋)
92, 3, 4crngocom 34132 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋𝑧𝑋) → (𝑥𝐻𝑧) = (𝑧𝐻𝑥))
109eleq1d 2835 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋𝑧𝑋) → ((𝑥𝐻𝑧) ∈ 𝐼 ↔ (𝑧𝐻𝑥) ∈ 𝐼))
1110biimprd 238 . . . . . . . . . . . . 13 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋𝑧𝑋) → ((𝑧𝐻𝑥) ∈ 𝐼 → (𝑥𝐻𝑧) ∈ 𝐼))
12113expa 1111 . . . . . . . . . . . 12 (((𝑅 ∈ CRingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → ((𝑧𝐻𝑥) ∈ 𝐼 → (𝑥𝐻𝑧) ∈ 𝐼))
1312pm4.71d 551 . . . . . . . . . . 11 (((𝑅 ∈ CRingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → ((𝑧𝐻𝑥) ∈ 𝐼 ↔ ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))
1413bicomd 213 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → (((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) ↔ (𝑧𝐻𝑥) ∈ 𝐼))
1514ralbidva 3134 . . . . . . . . 9 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋) → (∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) ↔ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))
1615anbi2d 614 . . . . . . . 8 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋) → ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
178, 16sylan2 580 . . . . . . 7 ((𝑅 ∈ CRingOps ∧ (𝐼𝑋𝑥𝐼)) → ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
1817anassrs 453 . . . . . 6 (((𝑅 ∈ CRingOps ∧ 𝐼𝑋) ∧ 𝑥𝐼) → ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
1918ralbidva 3134 . . . . 5 ((𝑅 ∈ CRingOps ∧ 𝐼𝑋) → (∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
2019adantrr 696 . . . 4 ((𝑅 ∈ CRingOps ∧ (𝐼𝑋𝑍𝐼)) → (∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
2120pm5.32da 568 . . 3 (𝑅 ∈ CRingOps → (((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ ((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
22 df-3an 1073 . . 3 ((𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ ((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))
23 df-3an 1073 . . 3 ((𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)) ↔ ((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
2421, 22, 233bitr4g 303 . 2 (𝑅 ∈ CRingOps → ((𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
257, 24bitrd 268 1 (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  wss 3723  ran crn 5251  cfv 6030  (class class class)co 6796  1st c1st 7317  2nd c2nd 7318  GIdcgi 27684  RingOpscrngo 34025  CRingOpsccring 34124  Idlcidl 34138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-iota 5993  df-fun 6032  df-fv 6038  df-ov 6799  df-1st 7319  df-2nd 7320  df-rngo 34026  df-com2 34121  df-crngo 34125  df-idl 34141
This theorem is referenced by:  prnc  34198
  Copyright terms: Public domain W3C validator