MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishpg Structured version   Visualization version   GIF version

Theorem ishpg 25696
Description: Value of the half-plane relation for a given line 𝐷. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishpg.p 𝑃 = (Base‘𝐺)
ishpg.i 𝐼 = (Itv‘𝐺)
ishpg.l 𝐿 = (LineG‘𝐺)
ishpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
ishpg.g (𝜑𝐺 ∈ TarskiG)
ishpg.d (𝜑𝐷 ∈ ran 𝐿)
Assertion
Ref Expression
ishpg (𝜑 → ((hpG‘𝐺)‘𝐷) = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐)})
Distinct variable groups:   𝐷,𝑎,𝑏,𝑐,𝑡   𝐺,𝑎,𝑏   𝐼,𝑎,𝑏,𝑐,𝑡   𝑃,𝑎,𝑏,𝑐,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑎,𝑏,𝑐)   𝐺(𝑡,𝑐)   𝐿(𝑡,𝑎,𝑏,𝑐)   𝑂(𝑡,𝑎,𝑏,𝑐)

Proof of Theorem ishpg
Dummy variables 𝑑 𝑒 𝑓 𝑔 𝑖 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishpg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
2 elex 3243 . . . 4 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
3 fveq2 6229 . . . . . . . 8 (𝑔 = 𝐺 → (LineG‘𝑔) = (LineG‘𝐺))
4 ishpg.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
53, 4syl6eqr 2703 . . . . . . 7 (𝑔 = 𝐺 → (LineG‘𝑔) = 𝐿)
65rneqd 5385 . . . . . 6 (𝑔 = 𝐺 → ran (LineG‘𝑔) = ran 𝐿)
7 ishpg.p . . . . . . . 8 𝑃 = (Base‘𝐺)
8 ishpg.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
9 simpl 472 . . . . . . . . . 10 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝑝 = 𝑃)
109eqcomd 2657 . . . . . . . . 9 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝑃 = 𝑝)
1110difeq1d 3760 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑃𝑑) = (𝑝𝑑))
1211eleq2d 2716 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑎 ∈ (𝑃𝑑) ↔ 𝑎 ∈ (𝑝𝑑)))
1311eleq2d 2716 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑐 ∈ (𝑃𝑑) ↔ 𝑐 ∈ (𝑝𝑑)))
1412, 13anbi12d 747 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑖 = 𝐼) → ((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ↔ (𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑))))
15 simpr 476 . . . . . . . . . . . . . . 15 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝑖 = 𝐼)
1615eqcomd 2657 . . . . . . . . . . . . . 14 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝐼 = 𝑖)
1716oveqd 6707 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑎𝐼𝑐) = (𝑎𝑖𝑐))
1817eleq2d 2716 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑡 ∈ (𝑎𝐼𝑐) ↔ 𝑡 ∈ (𝑎𝑖𝑐)))
1918rexbidv 3081 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑖 = 𝐼) → (∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐) ↔ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐)))
2014, 19anbi12d 747 . . . . . . . . . 10 ((𝑝 = 𝑃𝑖 = 𝐼) → (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ↔ ((𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐))))
2111eleq2d 2716 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑏 ∈ (𝑃𝑑) ↔ 𝑏 ∈ (𝑝𝑑)))
2221, 13anbi12d 747 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑖 = 𝐼) → ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ↔ (𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑))))
2316oveqd 6707 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑏𝐼𝑐) = (𝑏𝑖𝑐))
2423eleq2d 2716 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑡 ∈ (𝑏𝐼𝑐) ↔ 𝑡 ∈ (𝑏𝑖𝑐)))
2524rexbidv 3081 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑖 = 𝐼) → (∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐) ↔ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐)))
2622, 25anbi12d 747 . . . . . . . . . 10 ((𝑝 = 𝑃𝑖 = 𝐼) → (((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)) ↔ ((𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐))))
2720, 26anbi12d 747 . . . . . . . . 9 ((𝑝 = 𝑃𝑖 = 𝐼) → ((((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ (((𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐)))))
2810, 27rexeqbidv 3183 . . . . . . . 8 ((𝑝 = 𝑃𝑖 = 𝐼) → (∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ ∃𝑐𝑝 (((𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐)))))
297, 8, 28sbcie2s 15963 . . . . . . 7 (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]𝑐𝑝 (((𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐))) ↔ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)))))
3029opabbidv 4749 . . . . . 6 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]𝑐𝑝 (((𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐)))} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)))})
316, 30mpteq12dv 4766 . . . . 5 (𝑔 = 𝐺 → (𝑑 ∈ ran (LineG‘𝑔) ↦ {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]𝑐𝑝 (((𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐)))}) = (𝑑 ∈ ran 𝐿 ↦ {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)))}))
32 df-hpg 25695 . . . . 5 hpG = (𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]𝑐𝑝 (((𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐)))}))
33 fvex 6239 . . . . . . . 8 (LineG‘𝐺) ∈ V
344, 33eqeltri 2726 . . . . . . 7 𝐿 ∈ V
3534rnex 7142 . . . . . 6 ran 𝐿 ∈ V
3635mptex 6527 . . . . 5 (𝑑 ∈ ran 𝐿 ↦ {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)))}) ∈ V
3731, 32, 36fvmpt 6321 . . . 4 (𝐺 ∈ V → (hpG‘𝐺) = (𝑑 ∈ ran 𝐿 ↦ {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)))}))
381, 2, 373syl 18 . . 3 (𝜑 → (hpG‘𝐺) = (𝑑 ∈ ran 𝐿 ↦ {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)))}))
39 difeq2 3755 . . . . . . . . . 10 (𝑑 = 𝐷 → (𝑃𝑑) = (𝑃𝐷))
4039eleq2d 2716 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑎 ∈ (𝑃𝑑) ↔ 𝑎 ∈ (𝑃𝐷)))
4139eleq2d 2716 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑐 ∈ (𝑃𝑑) ↔ 𝑐 ∈ (𝑃𝐷)))
4240, 41anbi12d 747 . . . . . . . 8 (𝑑 = 𝐷 → ((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ↔ (𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷))))
43 id 22 . . . . . . . . 9 (𝑑 = 𝐷𝑑 = 𝐷)
4443rexeqdv 3175 . . . . . . . 8 (𝑑 = 𝐷 → (∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐) ↔ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)))
4542, 44anbi12d 747 . . . . . . 7 (𝑑 = 𝐷 → (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ↔ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐))))
4639eleq2d 2716 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑏 ∈ (𝑃𝑑) ↔ 𝑏 ∈ (𝑃𝐷)))
4746, 41anbi12d 747 . . . . . . . 8 (𝑑 = 𝐷 → ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ↔ (𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷))))
4843rexeqdv 3175 . . . . . . . 8 (𝑑 = 𝐷 → (∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐) ↔ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))
4947, 48anbi12d 747 . . . . . . 7 (𝑑 = 𝐷 → (((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)) ↔ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐))))
5045, 49anbi12d 747 . . . . . 6 (𝑑 = 𝐷 → ((((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))))
5150rexbidv 3081 . . . . 5 (𝑑 = 𝐷 → (∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐))) ↔ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))))
5251opabbidv 4749 . . . 4 (𝑑 = 𝐷 → {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)))} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))})
5352adantl 481 . . 3 ((𝜑𝑑 = 𝐷) → {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝑑) ∧ 𝑐 ∈ (𝑃𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝐼𝑐)))} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))})
54 ishpg.d . . 3 (𝜑𝐷 ∈ ran 𝐿)
55 df-xp 5149 . . . . . 6 (𝑃 × 𝑃) = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑃𝑏𝑃)}
56 fvex 6239 . . . . . . . 8 (Base‘𝐺) ∈ V
577, 56eqeltri 2726 . . . . . . 7 𝑃 ∈ V
5857, 57xpex 7004 . . . . . 6 (𝑃 × 𝑃) ∈ V
5955, 58eqeltrri 2727 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑃𝑏𝑃)} ∈ V
60 eldifi 3765 . . . . . . . . . . . 12 (𝑎 ∈ (𝑃𝐷) → 𝑎𝑃)
61 eldifi 3765 . . . . . . . . . . . 12 (𝑏 ∈ (𝑃𝐷) → 𝑏𝑃)
6260, 61anim12i 589 . . . . . . . . . . 11 ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) → (𝑎𝑃𝑏𝑃))
6362adantrr 753 . . . . . . . . . 10 ((𝑎 ∈ (𝑃𝐷) ∧ (𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷))) → (𝑎𝑃𝑏𝑃))
6463adantlr 751 . . . . . . . . 9 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ (𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷))) → (𝑎𝑃𝑏𝑃))
6564adantlr 751 . . . . . . . 8 ((((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ (𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷))) → (𝑎𝑃𝑏𝑃))
6665adantrr 753 . . . . . . 7 ((((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐))) → (𝑎𝑃𝑏𝑃))
6766rexlimivw 3058 . . . . . 6 (∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐))) → (𝑎𝑃𝑏𝑃))
6867ssopab2i 5032 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} ⊆ {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑃𝑏𝑃)}
6959, 68ssexi 4836 . . . 4 {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} ∈ V
7069a1i 11 . . 3 (𝜑 → {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))} ∈ V)
7138, 53, 54, 70fvmptd 6327 . 2 (𝜑 → ((hpG‘𝐺)‘𝐷) = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))})
72 vex 3234 . . . . . . 7 𝑎 ∈ V
73 vex 3234 . . . . . . 7 𝑐 ∈ V
74 eleq1 2718 . . . . . . . . 9 (𝑒 = 𝑎 → (𝑒 ∈ (𝑃𝐷) ↔ 𝑎 ∈ (𝑃𝐷)))
7574anbi1d 741 . . . . . . . 8 (𝑒 = 𝑎 → ((𝑒 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ↔ (𝑎 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷))))
76 oveq1 6697 . . . . . . . . . 10 (𝑒 = 𝑎 → (𝑒𝐼𝑓) = (𝑎𝐼𝑓))
7776eleq2d 2716 . . . . . . . . 9 (𝑒 = 𝑎 → (𝑡 ∈ (𝑒𝐼𝑓) ↔ 𝑡 ∈ (𝑎𝐼𝑓)))
7877rexbidv 3081 . . . . . . . 8 (𝑒 = 𝑎 → (∃𝑡𝐷 𝑡 ∈ (𝑒𝐼𝑓) ↔ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑓)))
7975, 78anbi12d 747 . . . . . . 7 (𝑒 = 𝑎 → (((𝑒 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑒𝐼𝑓)) ↔ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑓))))
80 eleq1 2718 . . . . . . . . 9 (𝑓 = 𝑐 → (𝑓 ∈ (𝑃𝐷) ↔ 𝑐 ∈ (𝑃𝐷)))
8180anbi2d 740 . . . . . . . 8 (𝑓 = 𝑐 → ((𝑎 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ↔ (𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷))))
82 oveq2 6698 . . . . . . . . . 10 (𝑓 = 𝑐 → (𝑎𝐼𝑓) = (𝑎𝐼𝑐))
8382eleq2d 2716 . . . . . . . . 9 (𝑓 = 𝑐 → (𝑡 ∈ (𝑎𝐼𝑓) ↔ 𝑡 ∈ (𝑎𝐼𝑐)))
8483rexbidv 3081 . . . . . . . 8 (𝑓 = 𝑐 → (∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑓) ↔ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)))
8581, 84anbi12d 747 . . . . . . 7 (𝑓 = 𝑐 → (((𝑎 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑓)) ↔ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐))))
86 ishpg.o . . . . . . . 8 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
87 simpl 472 . . . . . . . . . . . 12 ((𝑎 = 𝑒𝑏 = 𝑓) → 𝑎 = 𝑒)
8887eleq1d 2715 . . . . . . . . . . 11 ((𝑎 = 𝑒𝑏 = 𝑓) → (𝑎 ∈ (𝑃𝐷) ↔ 𝑒 ∈ (𝑃𝐷)))
89 simpr 476 . . . . . . . . . . . 12 ((𝑎 = 𝑒𝑏 = 𝑓) → 𝑏 = 𝑓)
9089eleq1d 2715 . . . . . . . . . . 11 ((𝑎 = 𝑒𝑏 = 𝑓) → (𝑏 ∈ (𝑃𝐷) ↔ 𝑓 ∈ (𝑃𝐷)))
9188, 90anbi12d 747 . . . . . . . . . 10 ((𝑎 = 𝑒𝑏 = 𝑓) → ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ↔ (𝑒 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷))))
92 oveq12 6699 . . . . . . . . . . . 12 ((𝑎 = 𝑒𝑏 = 𝑓) → (𝑎𝐼𝑏) = (𝑒𝐼𝑓))
9392eleq2d 2716 . . . . . . . . . . 11 ((𝑎 = 𝑒𝑏 = 𝑓) → (𝑡 ∈ (𝑎𝐼𝑏) ↔ 𝑡 ∈ (𝑒𝐼𝑓)))
9493rexbidv 3081 . . . . . . . . . 10 ((𝑎 = 𝑒𝑏 = 𝑓) → (∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏) ↔ ∃𝑡𝐷 𝑡 ∈ (𝑒𝐼𝑓)))
9591, 94anbi12d 747 . . . . . . . . 9 ((𝑎 = 𝑒𝑏 = 𝑓) → (((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏)) ↔ ((𝑒 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑒𝐼𝑓))))
9695cbvopabv 4755 . . . . . . . 8 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))} = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑒𝐼𝑓))}
9786, 96eqtri 2673 . . . . . . 7 𝑂 = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑒𝐼𝑓))}
9872, 73, 79, 85, 97brab 5027 . . . . . 6 (𝑎𝑂𝑐 ↔ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)))
99 vex 3234 . . . . . . 7 𝑏 ∈ V
100 eleq1 2718 . . . . . . . . 9 (𝑒 = 𝑏 → (𝑒 ∈ (𝑃𝐷) ↔ 𝑏 ∈ (𝑃𝐷)))
101100anbi1d 741 . . . . . . . 8 (𝑒 = 𝑏 → ((𝑒 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ↔ (𝑏 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷))))
102 oveq1 6697 . . . . . . . . . 10 (𝑒 = 𝑏 → (𝑒𝐼𝑓) = (𝑏𝐼𝑓))
103102eleq2d 2716 . . . . . . . . 9 (𝑒 = 𝑏 → (𝑡 ∈ (𝑒𝐼𝑓) ↔ 𝑡 ∈ (𝑏𝐼𝑓)))
104103rexbidv 3081 . . . . . . . 8 (𝑒 = 𝑏 → (∃𝑡𝐷 𝑡 ∈ (𝑒𝐼𝑓) ↔ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑓)))
105101, 104anbi12d 747 . . . . . . 7 (𝑒 = 𝑏 → (((𝑒 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑒𝐼𝑓)) ↔ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑓))))
10680anbi2d 740 . . . . . . . 8 (𝑓 = 𝑐 → ((𝑏 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ↔ (𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷))))
107 oveq2 6698 . . . . . . . . . 10 (𝑓 = 𝑐 → (𝑏𝐼𝑓) = (𝑏𝐼𝑐))
108107eleq2d 2716 . . . . . . . . 9 (𝑓 = 𝑐 → (𝑡 ∈ (𝑏𝐼𝑓) ↔ 𝑡 ∈ (𝑏𝐼𝑐)))
109108rexbidv 3081 . . . . . . . 8 (𝑓 = 𝑐 → (∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑓) ↔ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))
110106, 109anbi12d 747 . . . . . . 7 (𝑓 = 𝑐 → (((𝑏 ∈ (𝑃𝐷) ∧ 𝑓 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑓)) ↔ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐))))
11199, 73, 105, 110, 97brab 5027 . . . . . 6 (𝑏𝑂𝑐 ↔ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))
11298, 111anbi12i 733 . . . . 5 ((𝑎𝑂𝑐𝑏𝑂𝑐) ↔ (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐))))
113112rexbii 3070 . . . 4 (∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐) ↔ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐))))
114113opabbii 4750 . . 3 {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐)} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))}
115114a1i 11 . 2 (𝜑 → {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐)} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (((𝑎 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑐)) ∧ ((𝑏 ∈ (𝑃𝐷) ∧ 𝑐 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑏𝐼𝑐)))})
11671, 115eqtr4d 2688 1 (𝜑 → ((hpG‘𝐺)‘𝐷) = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wrex 2942  Vcvv 3231  [wsbc 3468  cdif 3604   class class class wbr 4685  {copab 4745  cmpt 4762   × cxp 5141  ran crn 5144  cfv 5926  (class class class)co 6690  Basecbs 15904  TarskiGcstrkg 25374  Itvcitv 25380  LineGclng 25381  hpGchpg 25694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-hpg 25695
This theorem is referenced by:  hpgbr  25697
  Copyright terms: Public domain W3C validator