Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isgrpda Structured version   Visualization version   GIF version

Theorem isgrpda 34067
Description: Properties that determine a group operation. (Contributed by Jeff Madsen, 1-Dec-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
isgrpda.1 (𝜑𝑋 ∈ V)
isgrpda.2 (𝜑𝐺:(𝑋 × 𝑋)⟶𝑋)
isgrpda.3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))
isgrpda.4 (𝜑𝑈𝑋)
isgrpda.5 ((𝜑𝑥𝑋) → (𝑈𝐺𝑥) = 𝑥)
isgrpda.6 ((𝜑𝑥𝑋) → ∃𝑛𝑋 (𝑛𝐺𝑥) = 𝑈)
Assertion
Ref Expression
isgrpda (𝜑𝐺 ∈ GrpOp)
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧   𝑛,𝐺,𝑥,𝑦,𝑧   𝑛,𝑋,𝑥,𝑦,𝑧   𝑈,𝑛,𝑥,𝑦,𝑧
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem isgrpda
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 isgrpda.2 . . 3 (𝜑𝐺:(𝑋 × 𝑋)⟶𝑋)
2 isgrpda.3 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))
32ralrimivvva 3110 . . 3 (𝜑 → ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))
4 isgrpda.4 . . . 4 (𝜑𝑈𝑋)
5 isgrpda.5 . . . . . 6 ((𝜑𝑥𝑋) → (𝑈𝐺𝑥) = 𝑥)
6 isgrpda.6 . . . . . . 7 ((𝜑𝑥𝑋) → ∃𝑛𝑋 (𝑛𝐺𝑥) = 𝑈)
7 oveq1 6820 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑦𝐺𝑥) = (𝑛𝐺𝑥))
87eqeq1d 2762 . . . . . . . 8 (𝑦 = 𝑛 → ((𝑦𝐺𝑥) = 𝑈 ↔ (𝑛𝐺𝑥) = 𝑈))
98cbvrexv 3311 . . . . . . 7 (∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈 ↔ ∃𝑛𝑋 (𝑛𝐺𝑥) = 𝑈)
106, 9sylibr 224 . . . . . 6 ((𝜑𝑥𝑋) → ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)
115, 10jca 555 . . . . 5 ((𝜑𝑥𝑋) → ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))
1211ralrimiva 3104 . . . 4 (𝜑 → ∀𝑥𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))
13 oveq1 6820 . . . . . . . 8 (𝑢 = 𝑈 → (𝑢𝐺𝑥) = (𝑈𝐺𝑥))
1413eqeq1d 2762 . . . . . . 7 (𝑢 = 𝑈 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝑥) = 𝑥))
15 eqeq2 2771 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑦𝐺𝑥) = 𝑢 ↔ (𝑦𝐺𝑥) = 𝑈))
1615rexbidv 3190 . . . . . . 7 (𝑢 = 𝑈 → (∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢 ↔ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))
1714, 16anbi12d 749 . . . . . 6 (𝑢 = 𝑈 → (((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢) ↔ ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
1817ralbidv 3124 . . . . 5 (𝑢 = 𝑈 → (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢) ↔ ∀𝑥𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
1918rspcev 3449 . . . 4 ((𝑈𝑋 ∧ ∀𝑥𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))
204, 12, 19syl2anc 696 . . 3 (𝜑 → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))
214adantr 472 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑈𝑋)
22 simpr 479 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑥𝑋)
235eqcomd 2766 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑥 = (𝑈𝐺𝑥))
24 rspceov 6855 . . . . . . . . . 10 ((𝑈𝑋𝑥𝑋𝑥 = (𝑈𝐺𝑥)) → ∃𝑦𝑋𝑧𝑋 𝑥 = (𝑦𝐺𝑧))
2521, 22, 23, 24syl3anc 1477 . . . . . . . . 9 ((𝜑𝑥𝑋) → ∃𝑦𝑋𝑧𝑋 𝑥 = (𝑦𝐺𝑧))
2625ralrimiva 3104 . . . . . . . 8 (𝜑 → ∀𝑥𝑋𝑦𝑋𝑧𝑋 𝑥 = (𝑦𝐺𝑧))
27 foov 6973 . . . . . . . 8 (𝐺:(𝑋 × 𝑋)–onto𝑋 ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 𝑥 = (𝑦𝐺𝑧)))
281, 26, 27sylanbrc 701 . . . . . . 7 (𝜑𝐺:(𝑋 × 𝑋)–onto𝑋)
29 forn 6279 . . . . . . 7 (𝐺:(𝑋 × 𝑋)–onto𝑋 → ran 𝐺 = 𝑋)
3028, 29syl 17 . . . . . 6 (𝜑 → ran 𝐺 = 𝑋)
3130sqxpeqd 5298 . . . . 5 (𝜑 → (ran 𝐺 × ran 𝐺) = (𝑋 × 𝑋))
3231, 30feq23d 6201 . . . 4 (𝜑 → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺𝐺:(𝑋 × 𝑋)⟶𝑋))
3330raleqdv 3283 . . . . . 6 (𝜑 → (∀𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
3430, 33raleqbidv 3291 . . . . 5 (𝜑 → (∀𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
3530, 34raleqbidv 3291 . . . 4 (𝜑 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
3630rexeqdv 3284 . . . . . . 7 (𝜑 → (∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢 ↔ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))
3736anbi2d 742 . . . . . 6 (𝜑 → (((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢) ↔ ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢)))
3830, 37raleqbidv 3291 . . . . 5 (𝜑 → (∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢) ↔ ∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢)))
3930, 38rexeqbidv 3292 . . . 4 (𝜑 → (∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢) ↔ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢)))
4032, 35, 393anbi123d 1548 . . 3 (𝜑 → ((𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢)) ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))))
411, 3, 20, 40mpbir3and 1428 . 2 (𝜑 → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢)))
42 isgrpda.1 . . . . 5 (𝜑𝑋 ∈ V)
43 xpexg 7125 . . . . 5 ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑋 × 𝑋) ∈ V)
4442, 42, 43syl2anc 696 . . . 4 (𝜑 → (𝑋 × 𝑋) ∈ V)
45 fex 6653 . . . 4 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ (𝑋 × 𝑋) ∈ V) → 𝐺 ∈ V)
461, 44, 45syl2anc 696 . . 3 (𝜑𝐺 ∈ V)
47 eqid 2760 . . . 4 ran 𝐺 = ran 𝐺
4847isgrpo 27660 . . 3 (𝐺 ∈ V → (𝐺 ∈ GrpOp ↔ (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢))))
4946, 48syl 17 . 2 (𝜑 → (𝐺 ∈ GrpOp ↔ (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢))))
5041, 49mpbird 247 1 (𝜑𝐺 ∈ GrpOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wrex 3051  Vcvv 3340   × cxp 5264  ran crn 5267  wf 6045  ontowfo 6047  (class class class)co 6813  GrpOpcgr 27652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-grpo 27656
This theorem is referenced by:  isdrngo2  34070
  Copyright terms: Public domain W3C validator