![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isghmd | Structured version Visualization version GIF version |
Description: Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
Ref | Expression |
---|---|
isghmd.x | ⊢ 𝑋 = (Base‘𝑆) |
isghmd.y | ⊢ 𝑌 = (Base‘𝑇) |
isghmd.a | ⊢ + = (+g‘𝑆) |
isghmd.b | ⊢ ⨣ = (+g‘𝑇) |
isghmd.s | ⊢ (𝜑 → 𝑆 ∈ Grp) |
isghmd.t | ⊢ (𝜑 → 𝑇 ∈ Grp) |
isghmd.f | ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
isghmd.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
Ref | Expression |
---|---|
isghmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isghmd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ Grp) | |
2 | isghmd.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ Grp) | |
3 | 1, 2 | jca 555 | . 2 ⊢ (𝜑 → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp)) |
4 | isghmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | |
5 | isghmd.l | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
6 | 5 | ralrimivva 3097 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
7 | 4, 6 | jca 555 | . 2 ⊢ (𝜑 → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))) |
8 | isghmd.x | . . 3 ⊢ 𝑋 = (Base‘𝑆) | |
9 | isghmd.y | . . 3 ⊢ 𝑌 = (Base‘𝑇) | |
10 | isghmd.a | . . 3 ⊢ + = (+g‘𝑆) | |
11 | isghmd.b | . . 3 ⊢ ⨣ = (+g‘𝑇) | |
12 | 8, 9, 10, 11 | isghm 17832 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))))) |
13 | 3, 7, 12 | sylanbrc 701 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ∀wral 3038 ⟶wf 6033 ‘cfv 6037 (class class class)co 6801 Basecbs 16030 +gcplusg 16114 Grpcgrp 17594 GrpHom cghm 17829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-ghm 17830 |
This theorem is referenced by: ghmmhmb 17843 resghm 17848 conjghm 17863 qusghm 17869 invoppggim 17961 galactghm 17994 pj1ghm 18287 frgpup1 18359 mulgghm 18405 ghmfghm 18407 invghm 18410 ghmplusg 18420 ringlghm 18775 ringrghm 18776 isrhmd 18902 lmodvsghm 19097 pwssplit2 19233 asclghm 19511 evlslem1 19688 cygznlem3 20091 psgnghm 20099 frlmup1 20310 mat1ghm 20462 scmatghm 20512 mat2pmatghm 20708 pm2mpghm 20794 reefgim 24374 qqhghm 30312 imasgim 38141 isrnghmd 42381 amgmlemALT 43031 |
Copyright terms: Public domain | W3C validator |